13,859 research outputs found
Performance and materials aspects of Ge:Be photoconductors
Ge:Be photoconductors were developed for low photon background applications in the 30 to 50 MM wavelength region. These detectors provide higher responsivity and lower noise equivalent power (NEP) than the Ge:Ga detectors currently operating in this wavelength range. Beryllium doped single crystals were grown by the Czochralski method from a carbon susceptor under a vacuum of approx. one million torr. An optimum detective quantum efficiency of 46% at a background flux of 1.5 x 10 to the 8th power photons/second (7 x 10 to the 13th power W) was reported. Ge:Be detector performance is strongly influenced by the absolute concentrations and the concentration ratio of residual shallow donors and shallow acceptors
Germanium:gallium photoconductors for far infrared heterodyne detection
Highly compensated Ge:Ga photoconductors have been fabricated and evaluated for high bandwidth heterodyne detection. Bandwidths up to 60 MHz have been obtained with corresponding current responsivity of 0.01 A/W
Price Determination in the Bottled Water Industry: A Case Study of Poland Spring
This paper analyzes the price of a single brand in the bottled water industry. We find that the brand's price is negatively related to its own share. We also find that price is positively related to the four firm concentration ratio in the carbonated segment, but unrelated in the noncarbonated segment.Demand and Price Analysis,
Anharmonic Self-Energy of Phonons: Ab Initio Calculations and Neutron Spin Echo Measurements
We have calculated (ab initio) and measured (by spin-echo techniques) the
anharmonic self-energy of phonons at the X-point of the Brillouin zone for
isotopically pure germanium. The real part agrees with former, less accurate,
high temperature data obtained by inelastic neutron scattering on natural
germanium. For the imaginary part our results provide evidence that transverse
acoustic phonons at the X-point are very long lived at low temperatures, i.e.
their probability of decay approaches zero, as a consequence of an unusual
decay mechanism allowed by energy conservation.Comment: 8 pages, 2 figures, pdf fil
Mineralocorticoid receptor blockade during a rat's first violent encounter inhibits its subsequent propensity for violence.
In individuals naive to serious conflict in an unfamiliar environment, violence has long-lasting effects on subsequent aggressive behavior. This effect of the stressful experience of a first violent conflict occurs in victims as well as offenders. The authors study in the male rat as offender the role of a rapid corticosterone signal mediated by brain mineralocorticoid receptors (MR) in adjusting the threshold of aggressive responses. For this purpose, the authors have applied electrical stimulation of the brain's aggression circuit via the hypothalamic attack area or HAA. Using this paradigm, they found that in inexperienced rats, retesting of the animals on subsequent days facilitated aggression. Hypothalamic attack thresholds decreased to about 50% of their initial level. However, blocking the MR once with the mineralocorticoid antagonist spironolactone, during the very first evoked attacks, permanently prevented attack facilitation in subsequent conflicts in that same environment. The MR-mediated effect blocked by the antagonist occurred within an hour following the start of the first aggression tests only. A later MR blockade was not effective. These findings suggest that the corticosterone stress response during a very first serious conflict initializes an enhanced propensity for violent aggression through the brain MR
Regrowth-related defect formation and evolution in 1 MeV amorphized (001) Ge
Geimplanted with 1MeV Si⁺ at a dose of 1×10¹⁵cm⁻² creates a buried amorphous layer that, upon regrowth, exhibits several forms of defects–end-of-range (EOR), regrowth-related, and clamshell defects. Unlike Si, no planar {311} defects are observed. The minimal EOR defects are small dotlike defects and are very unstable, dissolving between 450 and 550°C. This is in contrast to Si, where the EOR defects are very stable. The amorphous layer results in both regrowth-related defects and clamshell defects, which were more stable than the EOR damage.This work is supported by Semiconductor Research Corporation
Contract No. 00057787
- …