916 research outputs found

    Solitonic approach to the dimerization problem in correlated one-dimensional systems

    Full text link
    Using exact diagonalizations we consider self-consistently the lattice distortions in odd Peierls-Hubbard and spin-Peierls periodic rings in the adiabatic harmonic approximation. From the tails of the inherent spin soliton the dimerization d_\infty of regular even rings is found by extrapolations to infinite ring lengths. Considering a wide region of electron-electron onsite interaction values U>0 compared with the band width 4t_0 at intermediately strong electron-phonon interaction g, known relationships obtained by other methods are reproduced and/or refined within one unified approach: such as the maximum of d_\infty at U \simeq 3 t_0 for g \simeq 0.5 and its shift to zero for g \to g_c \approx 0.7. The hyperbolic tangent shape of the spin soliton is retained for any U and g <~ 0.6. In the spin-Peierls limit the d_\infty are found to be in agreement with results of DMRG computations.Comment: 4 pages, 4 figures, Physical Review B, Rapid Communications, v. 56 (1997) accepte

    Hole dynamics in generalized spin backgrounds in infinite dimensions

    Full text link
    We calculate the dynamical behaviour of a hole in various spin backgrounds in infinite dimensions, where it can be determined exactly. We consider hypercubic lattices with two different types of spin backgrounds. On one hand we study an ensemble of spin configurations with an arbitrary spin probability on each sublattice. This model corresponds to a thermal average over all spin configurations in the presence of staggered or uniform magnetic fields. On the other hand we consider a definite spin state characterized by the angle between the spins on different sublattices, i.e a classical spin system in an external magnetic field. When spin fluctuations are considered, this model describes the physics of unpaired particles in strong coupling superconductors.Comment: Accepted in Phys. Rev. B. 18 pages of text (1 fig. included) in Latex + 2 figures in uuencoded form containing the 2 postscripts (mailed separately

    Shadow band in the one-dimensional large UU Hubbard model

    Full text link
    We show that the factorized wave-function of Ogata and Shiba can be used to calculate the kk dependent spectral functions of the one-dimensional, infinite UU Hubbard model, and of some extensions to finite UU. The resulting spectral function is remarkably rich: In addition to low energy features typical of Luttinger liquids, there is a well defined band, which we identify as the shadow band resulting from 2kF2k_F spin fluctuations. This band should be detectable experimentally because its intensity is comparable to that of the main band for a large range of momenta.Comment: Latex file. 4 pages. Figures upon reques

    Density matrix algorithm for the calculation of dynamical properties of low dimensional systems

    Full text link
    I extend the scope of the density matrix renormalization group technique developed by White to the calculation of dynamical correlation functions. As an application and performance evaluation I calculate the spin dynamics of the 1D Heisenberg chain.Comment: 4 pages + 4 figures in one Latex + 4 postscript file

    Edge Logarithmic Corrections probed by Impurity NMR

    Get PDF
    Semi-infinite quantum spin chains display spin autocorrelations near the boundary with power-law exponents that are given by boundary conformal field theories. We show that NMR measurements on spinless impurities that break a quantum spin chain lead to a spin-lattice relaxation rate 1/T_1^edge that has a temperature dependence which is a direct probe of the anomalous boundary exponents. For the antiferromagnetic S=1/2 spin chain, we show that 1/T_1^edge behaves as T (log T)^2 instead of (log T)^1/2 for a bulk measurement. We show that, in the case of a one-dimensional conductor described by a Luttinger liquid, a similar measurement leads to a relaxation rate 1/T_1^{edge} behaving as T, independent of the anomalous exponent K_rho.Comment: 4 pages, 1 encapsulated figure, corrected typo

    Interaction between Kondo impurities in a quantum corral

    Full text link
    We calculate the spectral densities for two impurities inside an elliptical quantum corral using exact diagonalization in the relevant Hilbert subspace and embedding into the rest of the system. For one impurity, the space and energy dependence of the change in differential conductance Δ=dI/dV\Delta = dI/dV observed in the quantum mirage experiment is reproduced. In presence of another impurity, Δ=dI/dV\Delta = dI/dV is very sensitive to the hybridization between impurity and bulk. The impurities are correlated ferromagnetically between them. A hopping ≳0.15\gtrsim 0.15 eV between impurities destroy the Kondo resonance.Comment: 4 pages, 4 figure

    Kondo resonances and Fano antiresonances in transport through quantum dots

    Full text link
    The transmission of electrons through a non-interacting tight-binding chain with an interacting side quantum dot (QD) is analized. When the Kondo effect develops at the dot the conductance presents a wide minimum, reaching zero at the unitary limit. This result is compared to the opposite behaviour found in an embedded QD. Application of a magnetic field destroys the Kondo effect and the conductance shows pairs of dips separated by the charging energy U. The results are discussed in terms of Fano antiresonances and explain qualitatively recent experimental results.Comment: 4 pages including 4 figure

    Non-Abelian Bosonization and Haldane's Conjecture

    Full text link
    We study the long wavelength limit of a spin S Heisenberg antiferromagnetic chain. The fermionic Lagrangian obtained corresponds to a perturbed level 2S SU(2) Wess-Zumino-Witten model. This effective theory is then mapped into a compact U(1) boson interacting with Z_{2S} parafermions. The analysis of this effective theory allows us to show that when S is an integer there is a mass gap to all excitations, whereas this gap vanishes in the half-odd-integer spin case. This gives a field theory treatment of the so-called Haldane's conjecture for arbitrary values of the spin S.Comment: 9 pages REVTeX, no figure

    Spin-orbit coupling and ESR theory for carbon nanotubes

    Get PDF
    A theoretical description of ESR in 1D interacting metals is given, with primary emphasis on carbon nanotubes. The spin-orbit coupling is derived, and the resulting ESR spectrum is analyzed by field theory and exact diagonalization. Drastic differences in the ESR spectra of single-wall and multi-wall nanotubes are found. For single-wall tubes, the predicted double peak spectrum could reveal spin-charge separation.Comment: 4 pages, 1 figure, final version to appear in PR
    • …
    corecore