1,146 research outputs found

    Spin-charge separation in Aharonov-Bohm rings of interacting electrons

    Get PDF
    We investigate the properties of strongly correlated electronic models on a flux-threaded ring connected to semi-infinite free-electron leads. The interference pattern of such an Aharonov-Bohm ring shows sharp dips at certain flux values, determined by the filling, which are a consequence of spin-charge separation in a nanoscopic system.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Spin Order In One-dimensional Kondo And Hund Lattices.

    Get PDF
    We study numerically the one-dimensional Kondo and Hund lattices consisting of localized spins interacting antiferromagnetically or ferromagnetically with the itinerant electrons, respectively. Using the density-matrix renormalization group we find, for both models and in the small coupling regime, the existence of new magnetic phases where the local spins order forming ferromagnetic islands coupled antiferromagnetically. Furthermore, by increasing the interaction parameter |J| we find that this order evolves toward the ferromagnetic regime through a spiral-like phase with longer characteristic wavelengths. These results shed new light on the zero temperature magnetic phase diagram for these models.9317720

    Spin order in the one-dimensional Kondo and Hund lattices

    Get PDF
    We study numerically the one-dimensional Kondo and Hund lattices consisting of localized spins interacting antiferro or ferromagnetically with the itinerant electrons, respectively. Using the Density Matrix Renormalization Group we find, for both models and in the small coupling regime, the existence of new magnetic phases where the local spins order forming ferromagnetic islands coupled antiferromagnetically. Furthermore, by increasing the interaction parameter J|J| we find that this order evolves toward the ferromagnetic regime through a spiral-like phase with longer characteristic wave lengths. These results shed new light on the zero temperature magnetic phase diagram for these models.Comment: PRL, to appea

    Detection of topological transitions by transport through molecules and nanodevices

    Get PDF
    We analyze the phase transitions of an interacting electronic system weakly coupled to free-electron leads by considering its zero-bias conductance. This is expressed in terms of two effective impurity models for the cases with and without spin degeneracy. We demonstrate using the half-filled ionic Hubbard ring that the weight of the first conductance peak as a function of external flux or of the difference in gate voltages between even and odd sites allows one to identify the topological charge transition between a correlated insulator and a band insulator.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let

    Hole dynamics in generalized spin backgrounds in infinite dimensions

    Full text link
    We calculate the dynamical behaviour of a hole in various spin backgrounds in infinite dimensions, where it can be determined exactly. We consider hypercubic lattices with two different types of spin backgrounds. On one hand we study an ensemble of spin configurations with an arbitrary spin probability on each sublattice. This model corresponds to a thermal average over all spin configurations in the presence of staggered or uniform magnetic fields. On the other hand we consider a definite spin state characterized by the angle between the spins on different sublattices, i.e a classical spin system in an external magnetic field. When spin fluctuations are considered, this model describes the physics of unpaired particles in strong coupling superconductors.Comment: Accepted in Phys. Rev. B. 18 pages of text (1 fig. included) in Latex + 2 figures in uuencoded form containing the 2 postscripts (mailed separately

    Seven days treatment with the angiotensin II type 2 receptor agonist C21 in hospitalized COVID-19 patients; a placebo-controlled randomised multi-centre double-blind phase 2 trial

    Get PDF
    Background: COVID-19 morbidity and mortality remains high and the need for safe and effective drugs continues despite vaccines. Methods: Double-blind, placebo-controlled, multi-centre, randomised, parallel group phase 2 trial to evaluate safety and efficacy of oral angiotensin II type 2 receptor agonist C21 in hospitalized patients with COVID-19 and CRP ≥ 50-150 mg/L conducted at eight sites in India (NCT04452435). Patients were randomly assigned 100 mg C21 bid or placebo for 7 days in addition to standard of care. Primary endpoint: reduction in CRP. The study period was 21 July to 13 October 2020. Findings: 106 patients were randomised and included in the analysis (51 C21, 55 placebo). There was no significant group difference in reduction of CRP, 81% and 78% in the C21 and placebo groups, respectively, with a treatment effect ratio of 0.85 [90% CI 0.57, 1.26]. In a secondary analysis in patients requiring supplemental oxygen at randomisation, CRP was reduced in the C21 group compared to placebo. At the end of the 7-day treatment, 37 (72.5%) and 30 (54.5%) of the patients did not require supplemental oxygen in the C21 and placebo group, respectively (OR 2.20 [90% CI 1.12, 4.41]). A post hoc analysis showed that at day 14, the proportion of patients not requiring supplemental oxygen was 98% and 80% in the C21 group compared to placebo (OR 12.5 [90% CI 2.9, 126]). Fewer patients required mechanical ventilation (one C21 patient; four placebo patients), and C21 was associated with a numerical reduction in the mortality rate (one vs three in the C21 and placebo group, respectively). Treatment with C21 was safe and well tolerated. Interpretation: Among hospitalised patients with COVID-19 receiving C21 for 7 days there was no reduction in CRP compared to placebo. However, a post-hoc analysis indicated a marked reduction of requirement for oxygen at day 14. The day 14 results from this study justify further evaluation in a Phase 3 study and such a trial is currently underway. Funding: Vicore Pharma AB and LifeArc, UK

    The contribution of diet and genotype to iron status in women:a classical twin study

    Get PDF
    This is the first published report examining the combined effect of diet and genotype on body iron content using a classical twin study design. The aim of this study was to determine the relative contribution of genetic and environmental factors in determining iron status. The population was comprised of 200 BMI- and age-matched pairs of MZ and DZ healthy twins, characterised for habitual diet and 15 iron-related candidate genetic markers. Variance components analysis demonstrated that the heritability of serum ferritin (SF) and soluble transferrin receptor was 44% and 54% respectively. Measured single nucleotide polymorphisms explained 5% and selected dietary factors 6% of the variance in iron status; there was a negative association between calcium intake and body iron (p = 0.02) and SF (p = 0.04)

    Spectral functions of the 1D Hubbard model in the U -> \infty limit: How to use the factorized wave-function

    Full text link
    We give the details of the calculation of the spectral functions of the 1D Hubbard model using the spin-charge factorized wave-function for several versions of the U -> +\infty limit. The spectral functions are expressed as a convolution of charge and spin dynamical correlation functions. A procedure to evaluate these correlation functions very accurately for large systems is developed, and analytical results are presented for the low energy region. These results are fully consistent with the conformal field theory. We also propose a direct method of extracting the exponents from the matrix elements in more general cases.Comment: 15 pages,7 eps figures, RevTeX, needs epsf and multico

    A DMRG Study of Low-Energy Excitations and Low-Temperature Properties of Alternating Spin Systems

    Full text link
    We use the density matrix renormalization group (DMRG) method to study the ground and low-lying excited states of three kinds of uniform and dimerized alternating spin chains. The DMRG procedure is also employed to obtain low-temperature thermodynamic properties of these systems. We consider a 2N site system with spins s1s_1 and s2s_2 alternating from site to site and interacting via a Heisenberg antiferromagnetic exchange. The three systems studied correspond to (s1,s2)(s_1 ,s_2 ) being equal to (1,1/2),(3/2,1/2)(1,1/2),(3/2,1/2) and (3/2,1)(3/2,1); all of them have very similar properties. The ground state is found to be ferrimagnetic with total spin sG=N(s1s2)s_G =N(s_1 - s_2). We find that there is a gapless excitation to a state with spin sG1s_G -1, and a gapped excitation to a state with spin sG+1s_G +1. Surprisingly, the correlation length in the ground state is found to be very small for this gapless system. The DMRG analysis shows that the chain is susceptible to a conditional spin-Peierls instability. Furthermore, our studies of the magnetization, magnetic susceptibility χ\chi and specific heat show strong magnetic-field dependences. The product χT\chi T shows a minimum as a function of temperature T at low magnetic fields; the minimum vanishes at high magnetic fields. This low-field behavior is in agreement with earlier experimental observations. The specific heat shows a maximum as a function of temperature, and the height of the maximum increases sharply at high magnetic fields. Although all the three systems show qualitatively similar behavior, there are some notable quantitative differences between the systems in which the site spin difference, s1s2|s_1 - s_2|, is large and small respectively.Comment: 16 LaTeX pages, 13 postscript figure

    Density-matrix renormalisation group approach to quantum impurity problems

    Full text link
    A dynamic density-matrix renormalisation group approach to the spectral properties of quantum impurity problems is presented. The method is demonstrated on the spectral density of the flat-band symmetric single-impurity Anderson model. We show that this approach provides the impurity spectral density for all frequencies and coupling strengths. In particular, Hubbard satellites at high energy can be obtained with a good resolution. The main difficulties are the necessary discretisation of the host band hybridised with the impurity and the resolution of sharp spectral features such as the Abrikosov-Suhl resonance.Comment: 16 pages, 6 figures, submitted to Journal of Physics: Condensed Matte
    corecore