83,803 research outputs found
A three dimensional finite element model of wind effects upon higher harmonics of the internal tide.
A non-linear three dimensional unstructured grid model of the M2 tide in the shelf edge area off the west coast of Scotland is used to examine the spatial distribution of the M2 internal tide and its higher harmonics in the region. In addition the spatial variability of the tidally induced turbulent kinetic energy and associated mixing in the area are considered. Initial calculations involve only tidal forcing, although subsequent calculations are performed with up-welling and down-welling favourable winds in order to examine how these influence the tidal distribution (particularly the higher harmonics) and mixing in the region. Both short and long duration winds are used in these calculations. Tidal calculations show that there is significant small scale spatial variability particularly in the higher harmonics of the internal tide in the region. In addition turbulence energy and mixing exhibit appreciable spatial variability in regions of rapidly changing topography, with increased mixing occurring above seamounts. Wind effects significantly change the distribution of the M2 internal tide and its higher harmonics, with appreciable differences found between up- and down-welling winds, and long and short duration winds due to differences in mixing and the presence of wind induced flows. The implications for model validation, particularly in terms of energy transfer to higher harmonics, and mixing are briefly discussed
The mechanisms of tinnitus: perspectives from human functional neuroimaging
In this review, we highlight the contribution of advances in human neuroimaging to the current understanding of central mechanisms underpinning tinnitus and explain how interpretations of neuroimaging data have been guided by animal models. The primary motivation for studying the neural substrates of tinnitus in humans has been to demonstrate objectively its representation in the central auditory system and to develop a better understanding of its diverse pathophysiology and of the functional interplay between sensory, cognitive and affective systems. The ultimate goal of neuroimaging is to identify subtypes of tinnitus in order to better inform treatment strategies. The three neural mechanisms considered in this review may provide a basis for TI classification. While human neuroimaging evidence strongly implicates the central auditory system and emotional centres in TI, evidence for the precise contribution from the three mechanisms is unclear because the data are somewhat inconsistent. We consider a number of methodological issues limiting the field of human neuroimaging and recommend approaches to overcome potential inconsistency in results arising from poorly matched participants, lack of appropriate controls and low statistical power
On the receptivity and non-parallel stability of travelling disturbances in rotating disk flow
The generation and evolution of small amplitude wavelength traveling disturbances in rotating disk flow is discussed. The steady rotational speed of the disk is perturbed so as to introduce high frequency oscillations in the flow field. Secondly, surface imperfections are introduced on the disk such as roughness elements. The interaction of these two disturbances will generate the instability waves whose evolution is governed by parabolic partial differential equations that are solved numerically. For the class of disturbances considered (wavelength on the order of Reynolds number), it is found that eigensolutions exist which decay or grow algebraically in the radial direction. However, these solutions grow only for frequencies larger than 4.58 times the steady rotational speed of the disk. The computed receptivity coefficient shows that there is an optimum size of roughness for which these modes are excited the most. The width of these roughness elements in the radial direction is about .1 r(sub 0) where r(sub 0) is the radial location of the roughness. It is also found that the receptivity coefficient is larger for a negative spanwise wavenumber than for a positive one. Typical wave angles found for these disturbances are about -26 degrees
A Bohmian approach to quantum fractals
A quantum fractal is a wavefunction with a real and an imaginary part
continuous everywhere, but differentiable nowhere. This lack of
differentiability has been used as an argument to deny the general validity of
Bohmian mechanics (and other trajectory--based approaches) in providing a
complete interpretation of quantum mechanics. Here, this assertion is overcome
by means of a formal extension of Bohmian mechanics based on a limiting
approach. Within this novel formulation, the particle dynamics is always
satisfactorily described by a well defined equation of motion. In particular,
in the case of guidance under quantum fractals, the corresponding trajectories
will also be fractal.Comment: 19 pages, 3 figures (revised version
Three applications for mobile epidemic algorithms
This paper presents a framework for the pervasive sharing of data using wireless networks. 'FarCry' uses the mobility of users to carry files between separated networks. Through a mix of ad-hoc and infrastructure-based wireless networking, files are transferred between users without their direct involvement. As users move to different locations, files are then transmitted on to other users, spreading and sharing information. We examine three applications of this framework. Each of these exploits the physically proximate nature of social gatherings. As people group together in, for example, business meetings and cafés, this can be taken as an indication of similar interests, e.g. in the same presentation or in a type of music. MediaNet affords sharing of media files between strangers or friends, MeetingNet shares business documents in meetings, and NewsNet shares RSS feeds between mobile users. NewsNet also develops the use of pre-emptive caching: collecting information from others not for oneself, but for the predicted later sharing with others. We offer observations on developing this system for a mobile, multi-user, multi-device environment
Flight testing the fixed-wing configuration of the Rotor Systems Research Aircraft (RSRA)
The Rotor Systems Research Aircraft (RSRA) is a unique research aircraft designed to flight test advanced helicopter rotor system. Its principal flight test configuration is as a compound helicopter. The fixed wing configuration of the RSRA was primarily considered an energy fly-home mode in the event it became necessary to sever an unstable rotor system in flight. While it had always been planned to flight test the fixed wing configuration, the selection of the RSRA as the flight test bed for the X-wing rotor accelerated this schedule. This paper discusses the build-up to, and the test of, the RSRA fixed wing configuration. It is written primarily from the test pilot's perspective
Cost-effective aperture arrays for SKA Phase 1: single or dual-band?
An important design decision for the first phase of the Square Kilometre
Array is whether the low frequency component (SKA1-low) should be implemented
as a single or dual-band aperture array; that is, using one or two antenna
element designs to observe the 70-450 MHz frequency band. This memo uses an
elementary parametric analysis to make a quantitative, first-order cost
comparison of representative implementations of a single and dual-band system,
chosen for comparable performance characteristics. A direct comparison of the
SKA1-low station costs reveals that those costs are similar, although the
uncertainties are high. The cost impact on the broader telescope system varies:
the deployment and site preparation costs are higher for the dual-band array,
but the digital signal processing costs are higher for the single-band array.
This parametric analysis also shows that a first stage of analogue tile
beamforming, as opposed to only station-level, all-digital beamforming, has the
potential to significantly reduce the cost of the SKA1-low stations. However,
tile beamforming can limit flexibility and performance, principally in terms of
reducing accessible field of view. We examine the cost impacts in the context
of scientific performance, for which the spacing and intra-station layout of
the antenna elements are important derived parameters. We discuss the
implications of the many possible intra-station signal transport and processing
architectures and consider areas where future work could improve the accuracy
of SKA1-low costing.Comment: 64 pages, 23 figures, submitted to the SKA Memo serie
Picking pockets on the lawn: the development of tactics and strategies in a mobile game
This paper presents Treasure, an outdoor mobile multiplayer game inspired by Weiser’s notion of seams, gaps and breaks in different media. Playing Treasure involves movement in and out of a wi-fi network, using PDAs to pick up virtual ’coins’ that may be scattered outside network coverage. Coins have to be uploaded to a server to gain game points, and players can collaborate with teammates to double the points given for an upload. Players can also steal coins from opponents. As they move around, players’ PDAs sample network signal strength and update coverage maps. Reporting on a study of players taking part in multiple games, we discuss how their tactics and strategies developed as their experience grew with successive games. We suggest that meaningful play arises in just this way, and that repeated play is vital when evaluating such games
- …