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Abstract

In this review, we highlight the contribution of advances in human neuroimaging to the current 

understanding of central mechanisms underpinning tinnitus and explain how interpretations of 

neuroimaging data have been guided by animal models. The primary motivation for studying the 

neural subtrates of tinnitus in humans has been to demonstrate objectively its representation in 

the central auditory system and to develop a better understanding of its diverse pathophysiology

and of the functional interplay between sensory, cognitive and affective systems. The ultimate 

goal of neuroimaging is to identify subtypes of tinnitus in order to better inform treatment 

strategies. The three neural mechanisms considered in this review may provide a basis for TI 

classification. While human neuroimaging evidence strongly implicates the central auditory 

system and emotional centres in TI, evidence for the precise contribution from the three 

mechanisms is unclear because the data are somewhat inconsistent. We consider a number of 

methodological issues limiting the field of human neuroimaging and recommend approaches to 

overcome potential inconsistency in results arising from poorly matched participants, lack of 

appropriate controls and low statistical power. 

Keywords: Tinnitus, Non-invasive human brain imaging, spontaneous activity, temporal firing 

pattern, tonotopic reorganisation
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Introduction

Tinnitus is the conscious perception of sound that cannot be attributed to an external sound 

source. It is sometimes referred to as ‘phantom’ auditory experience. The percept takes a variety 

of forms including tonal, hissing, ringing, whistling or ‘cricket-like’ sound. Tinnitus is prevalent 

in the general population, with approximately 10-15% of people experiencing it in some form.

For about 20% of people experiencing tinnitus, it is sufficiently bothersome to seek treatment 

from their doctor or hearing specialist (Jastreboff and Hazell, 1998; Davis and El Rafaie, 2000; 

Andersson et al., 2005). 

Two broad categories of tinnitus have been defined. ‘Objective tinnitus’ refers to the rare 

number of cases in which the sound source can be identified and may be audible to others. For 

example, abnormal blood flow pulsations in vessels adjacent to the middle-ear bones can cause 

the stapes to vibrate against the oval window. Objective tinnitus has also been associated with 

abnormal rhythmic muscle contractions that occur in number of disorders like aneurysm and

palatal myoclonus (Henry et al. 2005). In contrast, ‘subjective tinnitus’ refers to the more 

common form in which the source of the auditory sensation cannot be clearly identified. In this 

review, we are primarily concerned with chronic subjective tinnitus and this problem will 

henceforth be referred to simply as ‘tinnitus’ (TI). Although certain common trends are found 

across the patient population, TI can have many different underlying causes. In particular, TI

often co-occurs with sensorineural hearing loss (Hoffman and Reed, 2004) and so its prevalence 

increases with age (Newall et al., 2001). For example, in a survey of 555 patients attending a TI 

clinic, 42% of those also reported presbycusis (Nicolas-Puel et al., 2006). Numerous studies 

report an association between the TI pitch and the region of the hearing loss (Noreña et al., 2002, 

Konig et al., 2006; Roberts et al., 2006; 2008) (Figure 1). However, TI is not restricted to those 
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with age-related hearing loss. In a survey of over 2,000 TI patients, Henry et al. (2005) reported 

that prolonged noise exposure and noise trauma were an associating factor for the majority of 

cases (22%), followed by head and neck injury (17%), infections and neck illness (10%) and 

drugs and other medical conditions (13%). The rest could not identify any specific known event 

associated with their TI onset.

*** Figure 1 here ***  

TI can be either a transient experience or a persistent chronic disorder (Davis and El 

Rafaie, 2000). For example, in the National Study of Hearing, the criterion for TI was defined as 

a percept that lasted at least 5 minutes (Davis, 1995). However, the severity of TI varies within 

and between patients. The perceptual characteristics of TI include its temporal duration, spatial 

lateralisation, loudness, pitch and sensitivity to residual inhibition. Henry and Meikle (2000) 

provide a comprehensive review of research in the characteristics of TI that can be studied using 

psychoacoustic techniques. A complex interplay of psychological, psychosocial, environmental

factors and personality traits also contribute to the perception of TI and its effect on an 

individual’s quality of life (House 1981; Henry and Wilson, 2001).

It is now accepted that central mechanisms play an important role in TI aetiology. While 

peripheral abnormalities in the cochlea may trigger TI they are not necessary for its maintenance 

because in many cases it persists even after transection of the auditory nerve (House and 

Brackmann, 1981; Pulec, 1984). This review provides a critical overview of human functional 

neuroimaging studies that have not only been highly influential in providing the evidence for the 

importance of central processing to TI sensations but have also attempted to identify putative 

models for the underlying neural mechanisms, with guidance from animal electrophysiology.
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Guiding principles from animal studies 

Perceptual and psychological measures of TI are insufficient to identify the neural 

mechanisms involved and to distinguish between potential subtypes of the disorder. Most of our 

current understanding about the neural mechanisms originates from research using invasive 

animal recordings of single and multi-units in the auditory system, both in vivo and in vitro. 

These studies have been highly informative for identifying neurophysiological correlates of TI 

by revealing the direct consequences of ototoxic drugs and noise trauma on the structure and 

function of the auditory system. The interpretation of human neuroimaging data is strongly 

guided by such findings, although at least four caveats limit the direct linkage between the two 

different types of measures. When reading the neuroimaging literature, one must remain vigilant 

for author biases towards highlighting positive associations between the observed results and 

previously reported electrophysiological data in order to propose some plausible model of the 

neural underpinnings of TI, without drawing attention to the potential limitations of doing so. 

First, one of the most common ways to induce TI in an animal is by the application of 

ototoxic drugs such as salycilate (aspirin), quinine, kanamycin and furosemide. Ototoxic drugs 

are well known to cause hearing loss and TI, although few human cases have the same aetiology. 

For example, Henry et al. (2005) reported that drugs and other medical conditions accounted for 

only 7% of TI in the clinic. Furthermore, high doses of the drug are toxic and so their damaging 

effects probably extend beyond the cochlea. Since pharmacological agents may induce specific 

patterns of abnormal activity in the central auditory system they are not necessarily a good model 

for the more common forms of TI. When noise trauma is used to induce TI, its effects are much 

more variable across individual animals (Heffner and Harrington, 2002). Thus, while noise 
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trauma may provide a more appropriate model for TI in humans, its use in the laboratory is not 

so popular.

Second, the complex effect of anaesthesia on central auditory function is not fully 

understood. Depending on the dosage, common anaesthetics like ketamine and pentobarbital can 

differentially decrease spontaneous activity of neurons (Ritz and Brownell, 1982; Kuwada et al., 

1989; Zurita et al., 1994), decrease or increase the size of burst discharges (Zurita et al., 1994), 

change the frequency tuning of neurons (Gaese and Ostwald, 2001), induce changes of amplitude 

and latency of brainstem auditory responses (Church and Gritzke, 1987; Church and Shucard, 

1987; Astl et al., 1996), reduce the inhibitory subregions (Evans and Nelson, 1973; Anderson 

and Young, 2004), as well as change the tonotopic organisation in auditory structures (Imig and 

Morel, 1985). Moreover, anaesthetic effects are not constant. They can vary from one neuron to 

the next and tend to be more pronounced in the central than in the peripheral auditory system. 

Therefore, neural activity that is interpreted as the correlate of TI may differ between 

anaesthetised and awake states. Moreover, both anaesthesia and ototoxic drugs modify neural 

activity within the central auditory system (e.g. Kenmochi and Eggermont, 1997), adding further 

complexity to the interpretation of abnormal neural activity. Thus, abnormal patterns of activity 

observed during the anaestetised state may not be directly applicable to the awake state (either 

animals or humans).

Third, despite sophisticated behavioural methods to evaluate the presence and severity of 

TI in animals (Lobarinas et al., 2004) no measures are directly equivalent to those obtained in 

humans. Methods in the animal laboratory include gap pre-pulse inhibition of acoustic startle 

(Yang et al., 2007), schedule-induced polidypsia avoidance conditioning (Lobarinas et al., 2004; 

Yang et al., 2007), active avoidance (Guitton et al., 2003) and conditioned suppression and 
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avoidance (Jastreboff and Sasaki, 1994). While some conditioning paradigms can provide 

estimates of pitch and loudness (Jastreboff and Sasaki, 1994), a complete characterisation of the 

perceptual and psychological attributes of TI cannot be established in laboratory animals. One 

clear advantage of working with people is their ability to introspect and report on their own 

perceptions and feelings.

Finally, while animal studies measure TI-related neural activity on a microscopic level 

(single or multiple neurons), human neuroimaging measures the same events on a macroscopic 

level (neural populations). Of all the non-invasive neuroimaging methods, 

electroencephalography (EEG) and magnetoencephalography (MEG) are the most directly 

related to electrical activity of the neural population. Such signals represent the sum of local 

synaptic voltages and this corresponds to the low-pass filtered range (cut off < 200 Hz) of the 

extracellular field potential, namely the local field potential (LFP) (Logothetis et al., 2001).

Although the LFP represents the input to and intracortical activity within a neural population, it 

is not necessarily correlated with spike output because LFPs are not necessarily supra-threshold 

(Heeger and Rees, 2002). Spiking activity measured in animal studies corresponds to the high-

pass component (cut off >300 Hz) of the extracellular field potential and represents the output of 

the neural population. In most circumstances, LFPs are highly correlated with local average 

firing rates, but this is not always the case. Thus, neural phenomena observed in the animal 

model may not always be detectable in humans using non-invasive neuroimaging methods.

The neural mechanisms of TI

The prevailing opinion is that TI is a perceptual consequence of altered patterns of 

intrinsic neural activity generated along the central auditory pathway following damage to 
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peripheral auditory structures (Eggermont and Roberts, 2004). While the loss of afferent input to 

the central auditory system can initiate TI, thereafter, central mechanisms play an important role 

in maintaining it. The challenge is to discover the correspondence between the different 

aetiologies of TI, their perceptual characteristics and patterns of abnormal brain activity. 

Interpretive leverage may be gained by closely linking individual audiological, perceptual and 

psychological profiles to the observed patterns of TI-related brain activity in order to distinguish 

one type of TI from another. However, while some neuroimaging studies do report such 

information (Melcher et al., 2000; Lockwood et al., 2001; Diesch et al., 2004), it has never been 

carried out with this primary aim in mind.

Invasive electrophysiological recordings in the mammalian auditory system have

typically identified three different classes of abnormal activity that follow sensory 

deafferentation and may also provide an objective marker for TI when it is associated with 

hearing loss. These three classes are; i) changes in the spontaneous stochastic neural firing rate

during the resting state, ii) changes in the temporal firing pattern of otherwise stochastic 

spontaneous activity (both in terms of bursting activity within a neuron and synchronous, 

oscillatory activity between neurons), and iii) reorganisation of the tonotopic map. Using MEG 

or EEG, an abnormally elevated response to external sounds (hyperexcitability) has also been 

shown to co-occur with TI (e.g. Hoke et al., 1989; Noreña et al., 1999; Kadner at al., 2002), but 

such hyperexcitability has been reported at frequencies unrelated to the dominant TI pitch and a 

number of studies have failed to replicate these results (Jacobson et al., 1991; Colding-Jorgensen 

et al., 1992; Attias et al., 1993), suggesting that this abnormal activity is unlikely to underpin the 

TI percept. The main focus of our review discusses the evidence for the three mechanisms,

linking the animal models to current perspectives from human neuroimaging. Although there is a 
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large body of evidence regarding the functional role of the cochlea, auditory nerve and dorsal 

cochlear nucleus in TI, we restrict our focus on brain structures that can be reliably measured 

non-invasively in humans; namely inferior colliculus, auditory thalamus and cortex.

i) Increased spontaneous stochastic firing rate

Guidance from animal electrophysiological studies

Many animal studies have shown evidence for increased spontaneous activity after 

administration of TI-inducing agents and noise trauma. Given that an external sound stimulus is 

normally signalled in the auditory system by an increased rate of neural firing, it is plausible that 

TI is consequence of a pathological increase in the rate of spontaneous random firing which can 

be erroneously interpreted as sound. Of relevance for human neuroimaging studies, animal 

models of TI have reported increased spontaneous firing rate in neurons within inferior colliculus

(e.g., Jastreboff and Sasaki, 1986; Willott et al., 1988; Chen and Jastreboff, 1995; Manabe et al., 

1997; Salvi et al., 2000b), medial geniculate body (e.g., Wallhäuser-Franke, 1997; Wallhäuser-

Franke et al., 2003) and auditory cortex (e.g., Ochi and Eggermont, 1996; Kenmochi and 

Eggermont, 1997; Eggermont and Kenmochi, 1998; Eggermont and Komiya, 2000; Seki and 

Eggermont, 2003; Noreña and Eggermont, 2003). In inferior colliculus, it has been shown that 

spontaneous activity changes do not necessarily occur in all of its subdivisions, but are most 

prominent in the central and external nuclei, in those neurons tuned to high (10-16 kHz) 

frequencies likely to correspond to the TI pitch in animals (Jastreboff and Sasaki, 1986; Chen 

and Jastreboff, 1995, Willott et al., 1988). Similarly, within primary auditory cortex (A1), 

Eggermont and colleagues have reported that TI-inducing drugs tended to increase spontaneous 

firing rate for neurons tuned to high frequencies and decrease firing rate for neurons tuned to low 
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frequencies (Kenmochi and Eggermont, 1997; Eggermont and Kenmochi, 1998). After noise 

trauma, increased spontaneous activity within the area of tonotopic reorganisation has been 

attributed to a reduction in the proportion of neurons with a low spontaneous firing rate, rather 

than to an overall rise in firing rate (Eggermont and Komiya, 2000; Noreña and Eggermont, 

2003). 

The implications of this result for human neuroimaging are worth clarifying. If an 

abnormal spontaneous stochastic firing rate occurs in only a small part of the tonotopic map, then 

the change in the population response may be too little to perturb the neuroimaging signal. In 

fMRI for example, one voxel would typically therefore encompass the entire nucleus of the 

inferior colliculus because it has a volume of about 0.032 cm3 (equivalent to the volume of a 

cube with a 3 mm side). Although frequency specificity within primary auditory fields can in 

principle be distinguished using fMRI, statistical sensitivity to fine-grained changes would 

require very careful individual analysis. Thus, at best, human neuroimaging is most likely to be 

sensitive to gross changes in spontaneous firing involving a spatially extensive population of 

neurons.

Human neuroimaging studies

Although elevated spontaneous activity related to TI has been demonstrated in animals, 

there is little direct evidence from humans. Changes in the overall rate of stochastic neural firing

are not detectable using EEG or MEG recording methods (Figure 2A) due to the nature of the 

signals that are measured. For a review of EEG and MEG see Baillet et al. (2001). Both 

techniques share a common generating source which is the current flow associated with the 

postsynaptic potentials of apical dendrites of pyramidal cells in the superficial layers of the 



11

cortex (Nunez and Srinivasan, 2006). MEG signals represent the magnetic fields corresponding 

to the ‘primary’ electrical activity generated by intracellular currents and are measured on the 

scalp using special sensors. In contrast, EEG signals represent the ‘secondary’ electrical 

potentials on the scalp that are produced by the extracellular currents associated with the 

intracellular neural activity. To be detected on the scalp, individual synaptic signals must be 

summed across a local population of approximately 104 to 105 neurons. The EEG and MEG 

signals thus reflect the synchronous population response in the millisecond time scale at the 

macroscopic level. Signal amplitude is determined by the degree of spatial and temporal 

synchrony between postsynaptic potentials and best temporal summation occurs for those with 

zero temporal lag (Nunez and Srinivasan, 2006). EEG and MEG are somewhat limited in their 

spatial localisation because an infinite number of intracranial sources could give rise to the 

measured pattern of signals at the scalp (the inverse problem). Furthermore, EEG signals are 

distorted by the electrical conductance of the surrounding tissue, blurring signals over a 

distributed number of sensors. A specific problem for MEG is that neural sources that are 

orientated in a perfectly radial orientation to the scalp do not generate a magnetic field and so 

cannot be detected (but see Hillebrand and Barnes, 2002).

Other neuroimaging methods rely on a different type of generating signal. Single photon 

emission computed tomography (SPECT) and positron emission tomography (PET) commonly 

measure blood flow, blood volume, oxygen concentration and glucose metabolism, reflecting 

local neuronal activity, drug uptake and neurotransmitter release (Lammertsma, 2001). The 

precise process measured is determined by the choice of radioactive isotope (e.g. 18F, 13N, 11C or 

15O) and by the duration of its half life. Various compounds that cross the blood brain barrier and

have a short half life are typically used to measure functional activity. For example, 15O is widely 



12

used to measure perfusion. The labelled tracer is injected (as water) or breathed in (as air) and

binds to water, circulating in the bloodstream and becoming concentrated in active brain regions

(for a review see Herscovitch and Ernst, 2000). As the tracer loses energy over its half life of 2 

minutes, it emits radiation signals (gamma rays) that are detected by an array of sensors around 

the head. The most common tracer for quantifying metabolic activity is 18F-fluorodeoxyglucose

(FDG). This compound is phosphorylated by the brain through the same pathway as glucose and 

has a half life of 110 minutes. For example, Arnold et al. (1996) reported increased resting 

metabolic activity in primary auditory cortex for a group of 10 out of 11 patients with chronic TI 

compared to 14 controls. However, a number of methodological issues limit the more 

widespread use of SPECT and PET. In particular, they have a relatively low temporal and spatial 

resolution and their invasive nature limits safe dosages, thus yielding individual data with a low 

signal-to-noise ratio.

While PET can be used to measure absolute brain activity, both PET and functional 

magnetic resonance imaging (fMRI) are more commonly used to measure the relative differences 

between two states (such as active listening versus resting). fMRI measures brain activity using 

an intrinsic signal that is based on the change in blood oxygenation and its effect on the magnetic 

properties of surrounding tissue. This intrinsic signal is known as the blood oxygenation level 

dependent (BOLD) response. The use of subtraction-based paradigms poses a problem for 

measuring TI-related activity because the sensation is either continuous or fluctuates in an 

uncontrolled manner. Fortunately many patients are able to voluntarily modify their TI, for 

example by eye gaze or facial movement (Levine, 1999b). In others, the TI level can be 

modulated in other ways, for example by a noise masker (Mirz et al., 1999; Melcher et al., 2000),

by the administration of pharmacological treatments such as lidocaine (Staffen et al., 1999; 
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Andersson et al., 2000) or by the application of neural stimulation using a TMS coil (de Ridder 

et al., 2004; 2005). TI-related activity can be identified by taking advantage of these 

manipulations to create experimental paradigms that lend themselves to statistical subtraction. 

This approach assumes that continuous TI influences the way in which the central auditory 

system responds to external sounds or that manipulations to modulate the TI percept correlate 

with changes in underlying neural activity. Conveniently these approaches enable TI patients to

act as their own comparison, providing further statistical control to across-group comparisons. 

For any conclusion to have some diagnostic or predictive validity, sufficient statistical power is 

required to support the inference that the mean effect over the population is significantly greater 

than under the null hypothesis. This typically requires a random-effect analysis in which the 

subject-to-subject response variability can be reliably estimated and for this the dataset should 

ideally include more than 20 subjects (Thirion et al., 2007). A majority of functional 

neuroimaging studies fail to reach such numbers and to illustrate this point, we highlight sample 

size throughout our review.

**** Figure 2 here**** 

Suppression of TI using noise maskers and residual inhibition The effect of masking noise 

on suppressing TI-related activity has been investigated within the inferior colliculus using fMRI 

(Melcher et al., 2000) and within auditory cortex using PET (Mirz et al., 1999). Mirz’s study was 

based on the prediction that TI-related spontaneous activity could be reduced through masking. 

Periods of narrowband noise were contrasted with baseline rest periods in 12 patients to show 

that the masking sound increased auditory cortical activity. However, without an appropriate 

control group, it is not possible to ascertain whether or not the resting or the sound-evoked 

activity differed from normal. In contrast, the fMRI study by Melcher and colleagues did include
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matched controls. Periods of bilateral broadband noise masker were contrasted with baseline rest 

periods in seven patients (four with lateralised and three with bilateral TI) and six controls. 

Melcher predicted that habitual TI would modify the evoked response to external sounds. 

Specifically, she argued that people with TI would exhibit a different pattern of activity in 

response to a masker sound compared to non-TI controls. In controls, the sound-evoked activity

occurred equally in both left and right inferior colliculi. In patients with lateralised TI however, 

the noise generated a smaller response on the side contralateral to the TI percept. This result 

could be explained by two different neurophysiological models (Figure 3). The ‘saturation’

model proposes that the increased spontaneous activity on the contralateral side limits the 

magnitude of the evoked response to an external noise (due to saturation of the BOLD response). 

Within this model it is also plausible that hyperacusis leading to an abnormally large response to 

external sounds may also partly explain the limits on overall activity in patients with TI. 

Alternatively the ‘physiological masking’ model proposes that the presence of the noise masker 

reduces habitual TI-related activity because it suppresses TI. Although the noise generates a 

response of normal magnitude, when the two conditions are subtracted from one another the 

overall response is reduced. However, one finding that appears inconsistent with either model 

was that the magnitude of the noise-evoked activity in patients with bilateral TI was similar to 

the controls.

**** Figure 3 here****

A recent fMRI study has similarly examined the pattern of sound-evoked activity in 35 

patients with lateralised TI and explained the results within the framework of the ‘saturation’ 

model (Smits et al., 2007). Notably, the response to the bilateral music was smaller on the side 

contralateral than ipsilateral to TI. Evidence for this asymmetry was observed in inferior 
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colliculus, medial geniculate body and primary auditory cortex, but not in nonprimary auditory 

cortex. It is interesting to note that, unlike Melcher et al. (2000), this study did find a difference 

between a further seven patients with bilateral TI and ten controls. While controls showed a left-

hemispheric dominance in auditory cortex for the music stimulus, the patients with bilateral TI 

did not. The reason for this discrepancy between results is unclear. However, it is possible that 

the degree of individual hearing loss influenced the differences attributed to TI. While Smits and

colleagues tested all TI patients irrespective of their degree of hearing loss, the cohort tested by 

Melcher and colleagues included only a few patients with mild losses and these were at least 

symmetrical.

The neural effects of TI suppression achieved after residual inhibition has also been

examined with PET (Osaki et al., 2005). Residual inhibition refers either to a partial or a 

complete temporary suppression of TI that lasts approximately 60 seconds after the cessation of a 

suprathreshold masking sound presented for a period of 30 to 60 seconds (Henry and Meikle, 

2000). In contrast to the above studies that reported a change in central auditory activation when 

the TI sensation was masked by an external sound, Osaki and colleagues found no such changes 

in auditory cortex when comparing periods of residual inhibition to habitual TI. Surprisingly, 

they did report a relative increase in activity in the anterior temporal pole during residual 

inhibition. However, we note that this study was conducted with three cochlear implantees who 

had been deaf for 3-7 years preoperatively and so it is possible that auditory cortical

reorganisation after prolonged deafness means that the results are not readily generalisable to 

patients with more common forms of TI. 



16

Suppression of TI using lidocaine Lidocaine is a local anaesthetic which is used by 

cardiologists in the treatment of arrhythmia. TI is one of the known short-term adverse effects 

that can follow an intravenous injection. However, in patients who already suffer from TI, 

lidocaine can actually suppress the phantom auditory sensation. The percentage of TI patients 

who experience a benefit from lidocaine is approximately 60% (Simpson and Davies, 1999). 

Neuroimaging has been used to localise and quantify changes in brain activity following 

lidocaine administration. In these studies, lidocaine is used to observe modulation of TI-related 

activity at rest or when listening to a sound. The prediction is that localising the neural effects of 

lidocaine will reveal the cortical sites mediating TI wherever lidocaine-based TI suppression is 

associated with reduction in brain activity. The first published pharmacological neuroimaging 

study used SPECT to quantify local TI-related brain metabolism (Staffen et al., 1999). A single 

patient with bilateral TI was scanned once with and once without lidocaine injection and the 

results were compared to a control subject. During habitual TI, resting metabolic activity in the 

primary auditory cortices was about 13% greater than in the rest of cortex (i.e. 95 and 85

ml/100g/min). Within primary auditory cortex, lidocaine reduced the resting metabolic activity 

by about 17% (down to 79 ml/100g/min). However, the global effect of lidocaine also reduced 

activity by 19% (down to 68 ml/100g/min). In the control subject, a rather puzzling finding was 

that lidocaine exerted no global changes in activity. Andersson et al. (2000) also reported a 

single case study of a patient with chronic bilateral TI using PET. Once again when the patient’s 

TI was suppressed by lidocaine auditory cortical activity reduced, but only in the left 

hemisphere. Reductions were also observed in right prefrontal and left parietal cortex. Two 

group studies are worth mentioning here. In the same PET study of noise masking that was 

previously described, Mirz et al. (1999) also contrasted periods of lidocaine-based TI 
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suppression with baseline rest periods. For the ten patients who responded to the drug, it was 

found to reduce activity in right prefrontal and parietal regions regardless of TI laterality, but it 

did not significantly modulate activity in auditory cortex. The design of a later PET experiment 

was more rigorous because it included a non-TI control group and also a condition in which a 

placebo injection was given (Reyes et al., 2002). Not all of the nine patients responded to 

lidocaine in the same way. In four patients it suppressed TI, in another four it exacerbated TI and 

in one it had no effect. In right auditory cortex, activity decreased after lidocaine to a greater 

degree in the patients for whom TI was suppressed, than in those for whom it was enhanced. A 

non-specific increase in activity due to lidocaine was found in cingulate cortex and a number of 

subcortical regions including thalamus, and a decrease in activity in the central sulcus. The null 

effect reported by Staffen et al. (1999) may therefore be a consequence of pooling together 

activations and deactivations in the analysis. More recently, Plewnia et al. (2007) examined nine 

patients for whom lidocaine resulted in a transient reduction of TI. Scans obtained during the 

resting state after lidocaine injection (TI suppression) were contrasted with baseline scans

(habitual TI). Statistical group analysis revealed reliable effects of lidocaine within right 

temporoparietal junction and left middle and inferior temporal cortex. Thus, although the precise 

cortical locations of the sites of lidocaine action appear to vary across different reports, these 

results tend to confirm a pivotal role for regions beyond auditory cortex in the perception of TI, 

including regions engaged in multisensory integration and cognitive function.

The effect of lidocaine on the evoked response to an external sound has not yet been 

measured in cortex. Nevertheless, there is one case study measuring activity in the inferior 

colliculus (Melcher et al., 1999). This patient reported lateralised TI which might be predicted to 

produce an abnormal asymmetrical response to the broadband noise (c.f. Melcher at al, 2000). 
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Results indicated that as TI was suppressed, the abnormal asymmetrical response to the 

broadband noise became symmetrical. As the TI percept gradually returned, so did the abnormal 

pattern of activity. This result is consistent with the saturation model of TI in that lidocaine could 

decrease spontaneous activity on the side contralateral to the TI percept thus temporarily 

‘normalising’ the response to sound.

It is possible that lidocaine modulates TI by temporarily reducing neural firing and

blocking neurotransmission via sodium channels (Chevier et al., 2004). Focal injections in 

primate sensory cortex have been shown not only to reduce the magnitude of the stimulus-

evoked BOLD response, but also to reduce the corresponding multi-unit activity and LFPs 

(Rauch et al., 2008). A temporary uncoupling of LFP and spiking activity during recovery from 

lidocaine inhibition suggests that lidocaine affects local sub-threshold synaptic activity as well as 

spiking output. Lidocaine has a dose-dependent effect on the vascular system causing 

vasoconstriction at low doses and vasodilation at high doses (Johns et al., 1985). The latter could 

produce a positive baseline shift in BOLD signal due to an increased concentration of 

oxyhaemoglobin in the dilated blood vessels. Consequently, it would be unexpected to find a

non-specific global effect of lidocaine for a TI patient and not for a control participant when both 

receive the same dose (c.f. Staffen, 1999). A putative site of action in the central auditory system

is consistent with electrophysiological studies in animals that demonstrate reductions in 

spontaneous activity in A1 and the anterior auditory field (AAF), but is inconsistent with an 

increase in activity measured in secondary auditory cortex (A2) (Eggermont and Kenmochi, 

1998). 
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Suppression of TI using direct neural stimulation According to the theory of increased 

spontaneous activity in the central auditory system, treatments to reduce this hyperactivity 

should immediately suppress TI. Repetitive transcranial magnetic stimulation (rTMS) is a non-

invasive technique that uses the principles of electromagnetism to alter neural activity by 

delivering to a focal brain region a series of magnetic pulses of short duration (> 300 µs) at 

repetition rates of around 1 Hz. This technique has had moderate success in treating a number of 

disorders that are assumed to arise from neural hyperactivity, including Parkinson’s disease 

(Fregni et al., 2005) and depression (Klein et al., 1999). Not only does rTMS have the potential 

to provide temporary relief from TI, but it can also be used as a research tool to confirm the 

direct involvement of specific cortical sites in the generation of TI (see Londero et al., 2006; and 

Pridmore et al., 2006 for reviews). The aim in the research setting is to first localise TI-related 

activity with PET or fMRI and to then apply rTMS to the cortical site that has been identified.

When TI co-occurs with a hearing loss, it is not possible to clearly attribute the abnormal activity 

to TI. However, if the subsequent rTMS applied to the site of maximal TI-related activity is 

successful in reducing TI, then this outcome increases confidence that this cortical site plays a 

causal role in TI. Two examples of this approach are given. In a PET study, Plewnia et al. (2007) 

identified, in eight TI patients, individual foci around the temporoparietal junction on the left or 

right side where activity significantly reduced during lidocaine-induced TI suppression. The 

temporoparietal junction corresponds to the superior portion of the Sylvian fissure close to 

auditory cortex. When rTMS was subsequently targeted to this site, six patients reported TI 

relief. In an earlier case study, de Ridder et al. (2004) reported a relative reduction in the right 

auditory cortical response to music presented binaurally. While this result is consistent with the 

left-sided laterality of the hearing loss, de Ridder and colleagues claim that the result also 
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supports the conclusion that TI-related activity was greater on the side contralateral to (left-

sided) TI. In this patient, rTMS was therefore applied to the right auditory cortex and a 

suppression of TI was reported. An extra-dural electrode was subsequently implanted in the 

patient’s right auditory cortex which after some period of readjustment provided long-term relief 

from TI. Although requiring replication, these two rTMS studies point to the essential role of 

auditory cortex and regions of multisensory integration in the perception of TI. 

Voluntary modulation of TI by somatomotor movements In humans, the perceptual 

characteristics of TI are well known to be modulated by various somatic movements such as jaw 

clenching, lateral eye gaze or finger-thumb opposition. It is proposed that this subtype of TI may 

follow a failure of cross-modal inhibition within brainstem structures (namely the dorsal cochlear 

nucleus) that code sensory information from different modalities (Levine 1999a; Cacace, 2003).

In a systematic study of 70 patients, Levine (1999b) found that regardless of TI aetiology or 

hearing status, 68% of patients could modulate the loudness, pitch or location of their TI. We do 

not provide a comprehensive review of studies that examine these cross-modal mechanisms 

because activity within the putative origin of this type of TI aetiology (namely dorsal cochlear 

nucleus) is barely detectable using human neuroimaging techniques. Instead we illustrate some 

of the neural changes that occur in higher centres of the auditory system that receive inputs from 

the dorsal cochlear nucleus. 

Lockwood et al. (1998) studied four patients with high-frequency hearing loss who were 

able to control the loudness of their troublesome TI by performing an oral facial movement. In 

two patients, the movement decreased TI loudness and this specifically reduced activity in the 

left primary and nonprimary auditory cortex, contralateral to the TI percept. In two patients, the 
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same movement increased TI loudness and this was associated specifically with increased 

activity in the left medial geniculate body, although it was not systematically related to TI

laterality. 

Other studies of patients who could voluntarily evoke TI or increase its loudness have 

also reported TI-related increases in auditory cortical activity to be located ipsilateral to the side 

of the percept. Two studies are worth mentioning here. Cacace et al. (1999) reported that one 

patient with left-sided deafness following neurosurgery was able to elicit left-sided TI by 

performing repetitive finger-thumb opposition tapping movement with the right hand. Using 

fMRI, activity was found to increase in the contralateral left temporoparietal junction during the 

movement. Using PET, Lockwood et al. (2001) measured TI-related activity in five patients with 

a left-sided deafness following neurosurgery and with left-sided TI that was evoked by a 

sideways eye movement. Again four out of the five patients showed TI-related increases in left 

anterior nonprimary auditory cortex, as well as in right prefrontal cortex. A group of four

patients with the same TI aetiology exhibited a different pattern of results (Giraud et al., 1999). 

In contrast, the phantom auditory sensations increased activity in nonprimary auditory cortex and 

this response was greater on the left side, regardless of the side of TI and the deafened ear. Thus, 

the authors concluded that elevated spontaneous activity may be associated with TI in those 

specific cases where somatic movements modulate the sensation, but the driving mechanism 

probably emerges from subcortical reorganisation and the measured cortical activity reflects the 

consequence of an ascending abnormal neural signal. 

Summary Neuroimaging findings from the various experimental manipulations that modify the 

TI percept have clearly demonstrated that TI is associated with changes in activity within 
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auditory cortical and subcortical structures and have confirmed that a mechanism for TI should 

be sought in the brain. The results are certainly not inconsistent with the interpretation that TI is 

associated with increased spontaneous activity in the central auditory pathway. However, one

important caveat is often neglected. Interpretations are almost always based on the inference that 

an increase in the haemodynamic response (either regional cerebral blood flow or BOLD signal) 

represents an increase in mean firing rate. Simultaneous fMRI and electrophysiological 

recordings suggest that while in some circumstances this is true (Heeger et al., 2000), it is not 

always the case. Logothetis and colleagues have repeatedly shown that the haemodynamic 

response correlates more with overall synaptic activity (measured by local field potentials) than

with mass action potentials (measured by multi-unit spiking activity) (Logothetis et al., 2001; 

Logothetis, 2008). Thus synaptic activity, including excitatory and inhibitory postsynaptic 

potentials as well as integrative processes such as neurotransmitter release, places the greatest 

demands on metabolic energy. Strictly speaking therefore, the haemodynamic response primarily 

reflects the consequences of neural input to a brain region and its processing therein, rather than 

its output in terms of the firing of projection neurons. While it is reasonable to expect input and 

output activity to correlate most of the time, when input into a particular brain region primarily 

plays a modulatory role, neuroimaging experiments may measure activation that does not 

correlate well with single-unit electrophysiological recordings (Logothetis and Wandell, 2004).

ii) Changes in the temporal firing pattern

Elevated spontaneous firing rate is unlikely to be the sole mechanism of TI and the emergence of 

a temporal pattern upon what is otherwise random spontaneous firing both within and across 

neurons has been postulated as a complementary neural abnormality underpinning TI. Both 
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increased bursting discharges and increased synchronous activity have been recorded

electrophysiologically in various auditory structures including inferior colliculus and primary 

auditory cortex, while in humans the temporal patterns of intrinsic activity have so far been 

examined only at the cortical level. 

Guidance from animal electrophysiological studies

Bursting activity within a neuron Given that an external tonal stimulus can be signalled in the 

auditory system by neural firing that is phase locked to the signal, it is plausible that TI is 

consequence of a pathological increase in burst firing that occurs spontaneously but is

erroneously interpreted as sound (Moller, 1984; Kaltenbach, 2000). Bursting activity is generally 

identified when two or more action potentials occur in rapid succession (i.e. a few milliseconds 

apart) at regular intervals (Figure 2B). While the limit of phase locking within the central 

auditory system is thought to be about 5 kHz (Evans, 1978), the pitch of TI in humans is usually 

judged to fall within the high-frequency range (Noreña et al., 2002; Roberts et al., 2006; Konig et 

al., 2006; Savastano, 2008) and often between 7 and 9 kHz (McCabe and Dey, 1965). Therefore 

the precise relationship between the periodicity of bursting and the perceived TI pitch still 

requires some further understanding.

Synchronous activity between neurons Synchrony between neurons can be measured by 

temporal cross-correlation analysis, a method that quantifies the degree of temporal synchrony 

between two simultaneously recorded neurons over a period of time (Figures 2C and 2D). 

Correlated activity between two neurons is indicated in the cross-correlogram as a central peak 

that becomes higher and narrower the stronger the correlation. Phase locking to the periodicity of 
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an external tonal signal tends to occur across neuronal ensembles, thus increasing between 

neurons. Using the cross-correlation technique, Eggermont and colleagues have also reported an 

increase in the degree of auditory synchronisation after application of quinine. In cat A1, quinine 

was shown to significantly increase the height of the peak of the correlation between the 

spontaneous activity recorded across separate electrodes (Ochi and Eggermont, 1997) in a dose-

dependent manner. In another study by Ochi and Eggermont (1996) a greater number of auditory 

neuron pairs showed significantly correlated firing after salicylate application in cat A1, 

however, the strength of the peak of correlation did not alter. 

As is the case for spontaneous stochastic firing rate, there is evidence that the changes in 

synchrony are spatially coincident with changes in the frequency tuning properties of those 

neurons. Seki and Eggermont (2003) reported that after tone-induced (6 kHz) hearing loss in cats 

increased synchrony was largely restricted to regions of A1 where reorganisation of the 

tonotopic map (6-10 kHz) was observed compared to non-reorganised regions. A similar result 

has been reported in cat A1 after noise trauma (Noreña and Eggermont, 2003). However, the 

spatial precision of human neuroimaging methods cannot reliably differentiate changes in 

synchrony across different portions of the tonotopic gradient.

In summary, the results are generally supportive of an association between TI and an 

increase in neural synchrony, particularly in the region of tonotopic reorganisation. Obviously, 

increased spontaneous firing rate within this region does increase the opportunity for 

synchronous activity, but there is reliable evidence that the increased synchrony is unlikely to be 

just a statistical artifact of spontaneous firing rate (Bauer et al., 2008). A computational model of 

TI describes the mechanism by which deafferentation can lead to increases in neural synchrony 
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within the damaged region of the tonotopic map through compensatory decreases in the gain of 

lateral connections (Dominguez et al., 2006).

The implication of an increase in synchrony between pairs of neurons in the context of 

human neuroimaging is worth clarifying. While electrophysiological studies of neural synchrony 

are performed on a microscopic level generally by computing the degree of cross-correlation 

across spiking activity for pairs of independent neurons, EEG and MEG measure synchrony on a 

macroscopic level with signals reflecting synchronous activity across a large population of 

neurons. Thus, human EEG and MEG studies of spontaneous activity typically examine 

oscillatory activity, i.e. synchronous activity that has a regular (periodic) temporal structure; a 

rather different class of neural phenomenon. Some electrophysiological evidence does support 

the notion that TI is associated with altered slow-rate periodic activity. For example, Kenmochi 

and Eggermont (1997) have shown in cat A1, individual neurons can have a preferred 

spontaneous firing periodicity (typically 6-8 Hz) that can be identified by applying 

autocorrelation analysis methods to the LFP. After administration of salicylate or quinine, the 

rate of these oscillatory responses decreased (on average from 8.7 to 7.6 Hz) and their strength 

increased. In humans, microelectrode recordings of thalamic activity in patients with TI 

undergoing preoperative assessment for the treatment of neurogenic pain have also shown 

abnormal rhythmic bursting at 4 Hz (Jeanmonod et al., 1996). Therefore, increased oscillatory 

power or changes in periodicity in the theta frequency range (4 to 8 Hz) may be potential neural 

signatures for TI.

Human neuroimaging studies
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EEG and MEG are applied to investigate oscillatory rhythms in humans in a wide variety 

of contexts. In humans, oscillatory brain activity is well known to arise during various states of 

normal arousal and cognition (e.g. Pfurtscheller and Lopes da Silva, 1999). Oscillatory activity 

in different frequency bands has also been shown to distinguish pathological from normal states

(Wienbruch et al., 2003; Osipova et al., 2006; Oshino et al., 2007). The notion of altered 

thalamocortical rhythms has been proposed to explain the neural underpinnings of various 

abnormalities in oscillatory activity associated with a range of common neurological conditions 

including tremor experienced in Parkinson’s disease, neurogenic pain, excessive thoughts in 

depression and phantom sounds in TI (Llinás and Paré, 1995; Llinás et al., 1999). The

thalamocortical dysrhythmia model (Figure 4) links the symptomatology with abnormal low 

frequency (< 10 Hz) and gamma band (> 30 Hz) activity in the resting state. Such abnormalities 

are supported by animal research and are suggested to arise from a cascade of neural events that 

are initiated by input deafferentation (in the case of TI by hearing loss) (Jeanmonod et al., 1996; 

Steriade, 2006). Loss of excitatory input results in the membrane potentials of thalamic neurons 

becoming hyperpolarised. At these more negative voltages, large-scale, stable slow-rate 

oscillatory coherence can emerge from an upregulation (or influx) of a calcium current and 

downregulation of a high-threshold potassium current in the thalamic relay neurons (Jahnsen and 

Llinás, 1984). Such slow-rate oscillations activate the return corticothalamic pathways and 

entraining brain structures of the ‘non-specific’ arousal circuit into the same pattern of theta 

oscillatory activity. At the cortical level, the focal slow-rate oscillations of cortico-cortical 

inhibitory interneurons reduce lateral inhibition and disinhibit beta (14 to 30 Hz) and gamma 

oscillations in neighbouring cortical modules. At the interface between normally innervated and 

deafferented thalamocortical circuits, abnormal gamma activity is proposed to be maximal 
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(Llinás et al., 2005). Thus the perceptual experience of TI is proposed to be linked to an increase 

in this gamma-band oscillatory activity which corresponds to the normal brain rhythm when an 

external sound is presented (Joliot et al., 1994; Crone et al., 2001). Llinas et al. (2005) speculate 

that TI is not the result of increased spontaneous activity per se. Rather, TI is considered to be a 

neural "edge effect" that originates in the cochlea at the point of contrasting ‘normal’ and ‘low’ 

levels of activity and is transmitted throughout tonotopic regions of the ascending central 

auditory system.

***Figure 4 here*** 

Resting state oscillatory activity Although the specific electrophysiological evidence to 

validate the thalamocortical dysrhythmia model is lacking, the theory makes a number of specific 

predictions that can be tested in humans using EEG or MEG, namely that TI should be

associated with an increase in oscillatory activity in low frequencies (<10 Hz) and in the beta and 

gamma bands, and that altered gamma activity should be maximal at the edge of the hearing loss 

in primary auditory cortex. To test some of these predictions, Llinás and colleagues measured 

spontaneous MEG activity in one patient with TI during rest (Llinás et al., 1999). During 

habitual TI, the average power of theta-band activity (5 to 10 Hz) over the whole head 

(normalised with respect to alpha-band activity, 10 to 15 Hz) was greater in the TI patient than in 

seven out of the nine controls. However, no data were reported for gamma-band activity and so 

this particular aspect of the model prediction was not tested.

**** Figure 5 here **** 

TI-related abnormalities in oscillatory activity have been examined within groups of TI 

patients. Comparing 17 patients with TI associated with hearing loss with 16 controls, Weisz et 
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al. (2005a) reported an abnormal average increase in MEG oscillatory power in the delta 

frequency band (1.5 to 4 Hz). It must be noted that although Weisz and colleagues do not 

specifically acknowledge Llinás’ thalamocortical dysrhythmia, their findings are in line with the 

concept of altered biorhythms (Figure 5). However, their results highlighted a simultaneous 

reduction in oscillatory power in the alpha band (8 to 13 Hz) which they attribute to a 

disinhibition of the ‘normal’ brain rhythms by the same neural mechanism that Llinás et al. 

(1999) attributes to changes in the beta band (see also Weisz et al., 2007a). Further empirical 

studies are therefore required to reconcile these discrepancies. We note that the altered 

oscillatory activity reported here cannot distinguish changes due to TI from those due to hearing 

loss because controls were reported to have ‘normal’ hearing. It is interesting to note that no 

abnormalities were reported in the gamma frequency band because “downsampling of the data 

did not permit analysis in this frequency band”. Gamma band activity was examined in a 

subsequent study in which data were acquired at the same sampling rate (678 Hz) and filtered 

using the same bandwidth (1 to 200 Hz), but were not downsampled (Weisz et al., 2007b). 26 TI 

patients were compared with 21 controls. An abnormally high level of oscillatory power in the

high-frequency (40 to 90 Hz) gamma range was reported, particularly in the 50 to 60 Hz range.

Further analysis of the gamma-band activity revealed a significant relationship between the 

laterality of TI and a contralateral increase in activity in the 55-Hz region suggesting that the 

dominance of oscillatory power in the gamma band (~55 Hz) is a fundamental neural correlate of 

the TI percept. In patients reporting bilateral TI, abnormal gamma activity was not lateralised.

Confirming the previous result, an increase in delta activity (1 to 3 Hz) and decrease in alpha 

activity (8 to 12 Hz) were also reported. A recent EEG study has localised TI-related gamma 

activity (40-80 Hz) to the temporal (possibly auditory) cortex (Ashton et al. 2007). However, 
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Ashton et al. found no consistent relationship between the laterality of TI and the side of 

maximal gamma activity (ipsilateral in five patients and contralateral in three). This finding 

contradicts the claim by Weisz et al. (2007b) that the scalp distribution of gamma activity 

determines TI laterality. Also in contrast to previous MEG studies, Ashton et al. found no 

evidence of abnormal activity in any of the low-frequency bands. Examining EEG or MEG data 

as simple power maps does not adequately address hypotheses about the underlying mechanisms 

of TI. In particular, by failing to localise the cortical sources of the abnormal activity to precise 

locations, specific predictions arising from the model cannot be tested. For example, the 

thalamocortical dysrhythmia model would predict that elevated gamma activity originates within 

primary auditory cortex most notably at the sloping edge of the hearing loss. However, current 

analysis methods for spatial localisation of EEG and MEG data are too imprecise to test this 

prediction.

Suppression of TI using noise maskers and residual inhibition Demonstrating altered 

spontaneous activity during habitual TI does not necessarily prove a causal link between 

abnormalities in oscillatory activity and the TI percept, especially when hearing loss is present. A 

better test of this theory would be to show differences in gamma-band oscillatory activity 

according to whether the TI percept is present or absent in the same group of patients. Noise 

masking and residual inhibition present two different ways to modify individual TI. To explain

the mechanism by which noise masking can suppress TI, Llinás et al. (1999) have suggested that 

the noise generates excitatory drive and depolarises the underlying thalamocortical circuits, thus 

reducing the abnormal pattern of theta oscillatory activity. The thalamocortical dysrhythmia

theory makes the specific prediction that noise masking to suppress TI should reduce theta and 
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gamma oscillatory power (Llinás et al., 2005). Preliminary MEG support from a single case 

study (Llinás et al., 2005) indicates that noise masking reduced power in the theta frequency 

band (~7 Hz) within the auditory cortex relative to the habitual TI condition (Figure 6). Again, 

no data were reported for gamma-band activity and so this particular aspect of the model 

prediction was not tested.

****Figure 6 here**** 

The effect of residual inhibition on gamma-band oscillations has been investigated using 

MEG (Kahlbrock and Weisz, 2008). Spontaneous brain activity in ten patients with TI was

contrasted between periods of residual inhibition and periods of habitual TI following an 

ineffective (control) masker. During residual inhibition, a significant reduction of power in the 

delta frequency band was reported arising from the temporal lobe. However, TI suppression did 

not alter activity in the alpha or gamma frequency bands, as might have been predicted from the 

thalamocortical dysrhythmia theory. To explain this null result, the authors suggest that 

prolonged TI might lead to self sustaining abnormal low- and high-frequency oscillations. 

The physiological effects of noise masking and residual inhibition are unlikely to be 

identical since, unlike masking, residual inhibition suppresses TI for some time after the noise

has ceased. Eggermont and Roberts (2004) have suggested that in residual inhibition, the 

suprathreshold masker inhibits the deafferented region of the tonotopic map by modifying the 

synchronous neural activity that underlies the TI sensation. According to their model, the loss of 

thalamic input and feed-forward inhibition on cortical neurons (leading to an increase in neural 

synchrony) extends throughout the deafferented region of the tonotopic map. For Eggermont and 

Roberts, TI reflects synchronous activity among deafferented neurons that retain their functional 

specialisation and the resulting activity is perceived as a tonal sound corresponding to its location 
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in the tonotopic map. This position differs from that of Llinás who proposed that synchrony is 

most affected at the edge of the deafferented region. Hence one might presume that, for Llinás, 

the dominant TI pitch should correspond to the edge frequency not at some place within the zone 

of hearing loss. Eggermont and Roberts (2004) do not speculate about the oscillatory frequency 

of this abnormal synchronous activity and so one cannot draw on human EEG and MEG data to 

distinguish between the two different synchrony models. 

Summary Evidence from animal and human studies generally supports neural synchrony as a 

possible mechanism of TI. Often neuroimaging studies make direct inferences from the animal 

work to explain the neural mechanisms underlying their EEG or MEG data. As our review has 

shown, this interpretive leap may not be valid here because synchrony between neurons 

represents a different class of neural phenomenon from that of oscillatory population activity. 

Another issue that is rarely discussed in the neuroimaging work concerns whether or not it is 

reasonable to assume that the periodicity observed microscopically in the pattern of neural 

spiking activity and the periodicity observed macroscopically in the rhythms of postsynaptic

activity indeed represent the same neural process. Macroscopic oscillatory activity can be 

measured by EEG and MEG only if it occurs in phase across an extremely large neural 

population and it can also occur in combination with bursting activity. These fundamental

assumptions should be scrutinised empirically using multimodal recording approaches. 

iii) Reorganisation of the cortical tonotopic map 

Guidance from animal electrophysiological studies



32

Many central auditory structures are tonotopically organised. In other words, neurons selectively 

respond to characteristic frequencies and there is an orderly progression of frequency tuning in 

bands across distinct auditory fields. Tonotopic organisation is established in the cochlea and is 

maintained throughout the central auditory pathway to the primary auditory fields. 

Deafferentation of a portion of the cochlea reduces input to the corresponding portion of the 

tonotopic map in each field. A maladaptive response to this loss of input causes expansion of the 

tonotopic map so that this affected portion now becomes responsive to the adjacent frequency at 

which hearing threshold is normal - the lesion-edge frequency (Figure 7). Of relevance for 

human neuroimaging studies, animal research has shown that a restricted cochlear lesion in adult 

animals drives neuroplastic changes in the frequency gradient within primary auditory cortex 

(Robertson and Irvine, 1989; Kaas, 1991, Rajan et al., 1993; Schwaber et al. 1993; Irvine et al., 

2001). One theory of TI proposes that it is a consequence of such cortical reorganisation (e.g., 

Salvi et al., 2000a). This neural mechanism of TI specifically links the TI pitch to the lesion-edge

frequency (c.f. Hazell and Jastreboff, 1990) since it assumes that the tonotopic expansion directly 

causes the phantom sound. Rajan and Irvine (1996) suggest that in order for such expansion to 

occur, hearing loss must be steeply sloping at ~50 dB per octave since they failed to demonstrate 

injury-induced reorganisation in cats with gradually sloping losses. 

**** Figure 7 here ****

Human neuroimaging studies

An early study using PET reported more extensive auditory cortical activation in 

response to a 2-kHz tone in a group of four TI patients with mild-to-moderate hearing loss (>2 

kHz from 30 to 70 dB) compared to controls with hearing levels of 25 dB or better from 0.25 to 
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8 kHz (Lockwood et al., 1998). While 2 kHz corresponded to the edge of the hearing loss, the TI 

pitch was matched near the peak of hearing loss, not the lesion edge. Therefore, this result is not 

fully explained by the tonotopic reorganisation model of TI. Moreover, the sensitivity of PET as 

a measure of tonotopic reorganisation is somewhat questionable. For example, in their review of 

PET for functional mapping within primary auditory cortical fields, Johnsrude and colleagues 

(2002) conclude that the spatial resolution of PET is not sufficient to address questions of a 

sufficiently fine anatomical grain. 

Alternatively, the amplitude of the evoked N1 (EEG) and N1m (MEG) response can be 

used as an indicator of cortical expansion because such reorganisation increases the size of the 

neural population responding to a single-frequency tone at the lesion edge. It also increases the 

distance between the response to the tone at the lesion edge and a control tone within the region 

of normal hearing. Using MEG, Dietrich et al. (2001) examined eight patients with high-

frequency hearing loss, seven of whom also complained of TI. For each patient, tone bursts were 

presented at the lesion-edge frequency and two control frequencies within normal hearing. Tone 

bursts of 0.5, 1, 2, and 4 kHz were used in the control group. In seven of the eight patients, the 

contralateral N1m response was significantly enhanced for the tone at the audiometric edge

compared to control tones supporting the claim for tonotopic expansion at the lesion edge.

However, the results provide no support for the putative association between cortical 

reorganisation and TI. Specifically, no significant correlation was found between the amplitude 

of the dipole moment for the N1m deflection and the reported scores for TI annoyance and the 

authors did not specify whether the patient without an enhanced N1m was the same individual 

who was TI-free.
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**** Figure 8 here****

A somewhat different pattern of results was obtained by Weisz et al. (2005b) which 

contradicts the predictions of the simple model of reorganisation considered hitherto. In their 

MEG study, Weisz and colleagues examined the amplitude of the N1m response in 14 TI 

patients with moderate to severe high-frequency hearing loss and 11 normally hearing controls. 

Similar to the previous study by Dietrich et al. (2001), the response to a lesion-edge frequency 

was compared to that for a control frequency chosen within the range of normal hearing. In 

contrast however, in the TI group the N1m response was significantly enhanced for the control

tone rather than the tone at the audiometric edge. This group result was significant only for the 

right hemisphere, but converging support for the importance of the right hemisphere was 

provided by the positive correlation (on the right side and not on the left) between the relative 

amplitude of the dipole moment for the lesion-edge tone and TI intrusiveness.

Changes in the amplitude and the dipole moment of the N1 response may also alter the 

location of the source estimate. The cortical reorganisation model would predict a deviant source 

localisation for the lesion-edge frequency. This hypothesis was tested by Weisz and colleagues

(2005b). Their results of dipole fitting indicated an abnormal source location for the lesion-edge, 

but again only in the right hemisphere and without any systematic association between the 

degree of deviance and TI-related distress. Hence the authors concluded that although some 

aspects of the data were consistent with the map reorganisation hypothesis, explanations of the 

hemispheric differences and the relationship to TI remained unresolved.

An early MEG study by Mühlnickel and colleagues (1998) is often cited in support of the 

tonotopic reorganisation model of TI. In this study, four single-frequency tones (from 1 to 8 
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kHz) were presented, one of which corresponded to the dominant TI pitch in individual patients. 

For the group of ten TI patients, the contralateral N1m response to the TI pitch was reported to 

shift on average 2.7 mm from the axis of the linear tonotopic gradient defined by the response to 

the other three tones (Figure 8). Such a shift from linearity was not found in the normally hearing 

controls. In our opinion, the results and the interpretation are problematic on a number of levels. 

First, according to Rajan and Irvine (1996), the hearing loss was probably insufficient to drive 

such dramatic cortical reorganisation since thresholds were at worst 25 dB. Second, the N1/N1m

dipole analysis for tonotopic mapping has been strongly criticised for its reliance on untenable 

assumptions and its lack of spatial precision (Lütkenhoner et al., 2003). Third, the observed shift 

in dipole location was for a TI pitch corresponding to the region of hearing loss, not for the 

lesion-edge frequency as predicted by the reorganisation hypothesis as proposed by Hazell and 

Jastreboff (1990). 

The steady-state response (SSR) has been proposed as a more spatially specific marker

for frequency-specific activity than the evoked N1/N1m transient because it is believed to arise 

within primary auditory cortex (Ross et al. 2002). The SSR is a component of the event-related 

potential that reflects a sustained response that is phase-locked to a periodic stimulus, with the 

best response occurring to sounds presented at a rate of 40 Hz. Diesch et al. (2004) investigated 

the 40-Hz SSR as an MEG marker for TI and examined whether an abnormal auditory evoked 

response was more closely associated with the lesion-edge frequency or the TI pitch. In this 

study, six carrier frequencies were presented including one at the audiometric edge, one 

corresponding to the TI pitch, two below and two above the sloping edge of the hearing loss. Ten 

patients were tested; all with TI but various degrees of hearing loss. The SSR amplitude (dipole 

power) was significantly enhanced for carrier frequencies matched to the TI pitch above the 
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audiometric edge. The mechanism relating TI to tonotopic reorganisation was supported by the 

significant positive correlation between normalised SSR amplitude and TI intensity and 

intrusiveness, even after the influence of hearing loss had been partialled out from the multiple 

regression. In a similar MEG study, Wienbruch et al. (2006) measured the 40-Hz SSR for eight 

carrier frequencies (384 to 6561 Hz) in a group of 28 TI patients (14 bilateral, 11 left-sided, 3 

right-sided) and 17 normally hearing controls. Audiometric evaluation was not performed, but 

hearing thresholds measured in the MEG scanner were elevated for the TI group compared with 

the control group across all frequencies, especially at higher frequencies. Dipole modelling of the

SSR data for the TI group revealed an abnormal frequency organisation with a flattening of the 

gradient above 1 kHz in both hemispheres. This weak expression of tonotopy is consistent with 

the animal model of altered frequency representation after hearing loss. Nevertheless, the data 

failed to support any systematic relationship between SSR variables (deviation from the linear 

frequency gradient and dipole power) and properties of the TI sensation (loudness, pitch and 

duration). To explain these results, the authors speculated that nonprimary auditory regions 

beyond the core tonotopic fields might determine the perception of TI. 

A different approach considers the auditory mismatch negativity (MMN) which is a 

differential rather than an absolute evoked response. The MMN provides a discrimination index 

for a deviant tone in a sequence of repeating standards. It is a negative potential with a post-

stimulus latency of 100-250 ms and a source that includes auditory cortex. Weisz et al. (2004) 

hypothesised that if the lesion-edge frequency is over-represented in the tonotopic map then it 

should elicit a larger MMN than would a single-frequency tone in the region of normal hearing.

Fifteen TI patients were compared with audiometrically matched controls. Abnormal MMN 

responses were specific to the lesion-edge frequency in the TI group. However, in contradiction
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with the reorganisation model, source localisation of the N1 implicated the involvement of

anterior brain regions in the abnormal MMN, more suggestive of a role for emotional and 

cognitive centres in TI than for the central auditory system. Convergent evidence for this 

interpretation was provided by a significant correlation between the degree of the anterior shift 

and the degree of self-reported psychological distress as measured by a TI questionnaire.

Summary Evidence from EEG and MEG in humans is generally consistent with an expansion of 

frequency-specific auditory cortical responses corresponding to the audiometric edge in patients 

with sloping high-frequency hearing loss. More direct evidence to link neurophysiological 

markers of reorganisation with perceptual variables related to TI is however somewhat mixed

and therefore there is no conclusive evidence that this type of neural plasticity underpins TI.

Neuro-modulatory influences

It is well established that co-morbid symptoms of TI include stress, anxiety, and depression; 

factors that affect psychological and emotional well-being (Hiller et al., 1997; Andersson and 

McKenna, 1998; Andersson et al., 2006). Some people can tolerate their TI and accept it as part 

of their everyday environment. Others find their TI intolerable and as a consequence it can lead 

to other clinical symptoms such as poor concentration, sleep disturbance, fear, anxiety and 

depression (Tyler and Baker, 1983). The limbic system is involved in affective processing 

through its influence on the endocrine and the autonomic nervous systems, as well as its 

connections to the prefrontal cortex. The system includes hippocampus, amygdala, hypothalamus 

and cingulate gyrus. The involvement of limbic and autonomic nervous systems that subserve

human emotions is postulated to play a role in TI (Jastreboff, 1990) and the negative emotions 
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associated with TI may be mediated by direct connections between the auditory cortex and 

limbic system. 

A number of animal studies have reported the involvement of the limbic system in TI. To 

the best of our knowledge, there are no published electrophysiological data on this issue but there 

are a number of reports on c-fos expression which can provide an indirect marker of activity 

because it is a transcription factor that is expressed during neural firing. Salicylate and exposure 

to impulse noise increased c-fos expression in the amygdala, thalamus, frontal and cingulate 

cortices, as well as in hypothalamic and brainstem regions (e.g. locus coeruleus) involved in 

behavioural and physiological defensive reactions in gerbils (Wallhäuser-Franke, 1997; 

Wallhäuser-Franke al., 2003; Mahlke and Wallhäuser-Franke, 2004). Activation of these areas 

was associated with stress, aversive-affective components as well as autonomous reactions 

associated with treatment and TI. In another study in hamsters the increase of c-fos expression 

was observed in structures such as locus coeruleus, lateral parabrachial nucleus, and certain 

subregions of hypothalamus and amygdala (Zhang et al., 2003).

In humans, a number of neuroimaging studies have also identified TI-related activity in 

limbic regions (see Figure 9). Traditional MEG methods of analysis remain rather insensitive to 

signals arising from deep sources within the brain since the magnetic fields decay rapidly over 

distance. Nevertheless, using alternative analysis techniques, several recent MEG studies have 

reported fear-related responses in the amygdala (Moses et al., 2007; Cornwell et al., 2008).

Studies of TI have typically used PET and MRI for spatial localisation of limbic involvement. 

An early neuroimaging study used SPECT to identify altered patterns of resting-state cerebral

blood flow in two patients with TI (Shulman et al., 1995). Compared to five controls, both 

patients showed decreased metabolic activity in bilateral hippocampus and amygdala and 
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prefrontal cortex. Regions of altered activity were also reported in other brain regions, but these

were inconsistent across patients. The authors suggest that the abnormal activity may reflect a 

dysfunctional neural network originating in auditory cortex and extends to other areas, including 

the limbic system. A positive correlation has also been reported between the level of anxiety and 

resting-state brain activity in left and right anterior cingulate cortex and the caudate nucleus 

(Gardner et al., 2002). Although not traditionally considered part of the limbic system, the 

caudate nucleus is a subcortical structure that may play a role in regulating the transmission of 

affective information between the thalamus and the prefrontal cortex. Supporting evidence has 

been shown in a study that presented people without TI with aversive, high-pitched tonal sounds, 

assumed to mimic TI (Mirz et al. 2000a). This PET study revealed sound-related activity in the 

amygdala/parahippocampal gyrus and hippocampus, bilaterally. 

**** Figure 9 here **** 

Several other studies have reported the extra-auditory effects of manipulating the TI 

percept. Using PET, Mirz et al. (2000b) reported that both noise masking and administration of 

lidocaine reduced activity in left amygdala and right prefrontal cortex. For the masking group, 

activity also reduced in the right anterior cingulate gyrus. Abnormal left hippocampal activation

has been reported in three patients with right-sided TI both in response to a change in the 

loudness of the TI and in response to external sound stimulation (Lockwood et al., 1998). Several 

studies have reported the involvement of additional centres in prefrontal cortex that possibly

subserve selective attention. For example, Mirz et al. (1999) found that reducing TI by using 

either noise masking or lidocaine reduced activity in right middle frontal gyrus for all patients 

regardless of the laterality of TI. However, no changes were found in the limbic system. As in TI 
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patients, Mirz et al. (2000a) also found that in normal listeners, aversive sounds engaged the 

middle frontal gyrus, more so on the right side.

Anatomical changes in the gray- and white-matter tissue have also been identified in 

limbic structures using voxel-based morphometry to statistically contrast anatomical scans from 

a group of TI patients and matched controls (Mühlau et al., 2006). In this group, TI was 

associated with a decrease in gray-matter volume in a subcallosal region that the authors 

interpreted as including nucleus accumbens, but also appears to extend across part of the anterior 

cingulate gyrus. The nucleus accumbens has connections with the thalamus and prefrontal cortex 

and Muhlau speculated that it may play a role in the long-term habituation to TI. No effects were 

reported for auditory cortex. More recent evidence challenges this null result. Schneider et al. 

(2009) re-evaluated the effect of hearing loss and TI on the gray-matter volume of the postero-

medial part of Heschl’s gyrus using a more anatomically precise measurement procedure. 

Results revealed a reduction in the volume of Heschl’s gyrus in patients with TI compared to 

controls and further analysis demonstrated that this difference was unrelated to hearing loss. 

Schneider and colleagues (2009) suggest that voxel-based morphometry is rather insensitive for 

revealing volumetric changes, particularly for highly convoluted cortical surfaces exhibiting a 

high degree of individual variability, such as the auditory cortex. 

Brain regions do not operate in isolation but are functionally connected to one another

such that the output of one region can drive the activity recorded in another. In order to 

understand the complexity of the neuro-modulatory influences in TI, neuroscientists must start to 

examine these dynamic networks of activity. Intrinsic connectivity can be measured from the 
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resting-state signal, while connectivity underlying specific perceptual or cognitive processes is

typically measured while performing experimental tasks. The millisecond sampling rate of EEG 

and MEG can be used to investigate synchrony and examine large-scale integration of brain 

regions. A recent MEG study has investigated functional connectivity within a putative TI

network by evaluating synchronised activity in the frequency domain between signals recorded 

at eight different brain sites (Schlee et al., 2008). These eight regions were located in the left and 

right frontal, temporal, and parietal lobes and in anterior and posterior cingulate cortex. Schlee 

and colleagues hypothesised that while sounds typically engage this network, a tone

corresponding to the TI pitch (i.e. a tone at the audiometric edge) would evoke greater synchrony 

within the network than a control tone more than one octave below the audiometric edge. Twelve 

patients with hearing loss and TI and ten normally hearing controls were recruited. Not only was 

there a significant interregional interaction for the TI pitch in the TI group compared to controls, 

but there was a correlation between the strength of phase synchronisation and the subjective 

ratings of TI intrusiveness, for the links between anterior cingulate and right parietal lobe and 

right frontal lobe, respectively. While the results from this study are particularly intriguing 

because it attempts to statistically assess the operation of the neuromodulatory influences, the 

conclusions are somewhat limited in their precision of spatial localisation, their ability to assess 

the role of hearing impairment, and their lack of individualised stimuli properly matched to the 

TI pitch. Further studies of functional connectivity are required to validate these preliminary.

fMRI methods can also be used to explore such networks and low-frequency connectivity in 

BOLD signal appears to correlate well with EEG coherence (Laufs et al., 2003). Connectivity 

analysis has the potential to provide the functional linkage between TI and the associated 
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perceptual, psychological and emotional factors. However, to date we could find only one 

unpublished report of this approach (Langers and Melcher, 2008, conference report).

Conclusions

The results of non-invasive human neuroimaging studies have validated the claim that TI 

is associated with changes in structure and function at various sites in the central auditory 

system. One of the significant contributions of human neuroimaging concerns its ability to define 

brain centres involved in the psychological aspects of the disorder, such as the limbic system. 

Further work to determine correlations between the amplitude of the response in these structures 

and the reported scores for TI annoyance will be important for corroborating a 

neurophysiological model of the TI network. Nevertheless, it remains a challenge to synthesise 

the current body of data into a set of firm conclusions regarding the key mechanisms 

underpinning TI within the auditory system. 

This overview has highlighted two key themes that recur throughout each of the three

sections (i-iii) describing how neuroimaging has been used to examine the potential neural 

mechanisms of TI. The first is a common disregard for the conceptual challenges faced when 

predicting and interpreting human neuroimaging results based on models of TI predominantly

derived from animal research. The second concerns the somewhat inconsistent results across 

neuroimaging studies, even those reported from the same laboratory. Our discussion expands on 

each of these two themes in turn. 

Regarding the first of these issues, the main problem is that the translation from 

microscopic neural events recorded in animals with TI to macroscopic patterns of brain activity 

recorded in humans with TI is not straightforward. The assumptions being made when drawing 
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conclusions from the human neuroimaging data are not always clearly articulated and so the 

functional significance of these results might risk being over-interpreted by the non-specialist 

reader. For example, the coupling between local neural activity and the BOLD response is still 

unclear. In fact, the fMRI community is still actively engaged in debate over this issue. While it 

is not necessarily in the domain of TI specialists to direct research to this basic neuroscience 

question, our first recommendation for future progress in TI would be to encourage collaborative 

neuroscience to integrate animal and human work on TI in order to obtain sufficient empirical 

data to define the relationship between invasive and non-invasive recordings of the same neural 

phenomenon. However, this goal may be difficult to achieve because it requires considerable 

cooperation between specialist teams, often geographically separated. An alternative approach 

could be the use of multiple, complementary recording methods in the same animal or human to 

provide convergent evidence. Such a multimodal approach would not only overcome the 

shortcomings of individual techniques, but would also increase confidence in the scientific 

interpretation of the data with respect to a particular neurophysiological model of TI. For 

example, a particular prediction could be tested in the same animal using neural data recorded at 

both microscopic (e.g. spiking activity) and macroscopic (e.g., LFPs and BOLD signal) scales 

(c.f. Logothetis et al., 2001). For humans, it is well known that the spatial and temporal 

limitations in EEG/MEG and fMRI can be overcome by acquisition of both types of non-

invasive data in the same participant using the same experimental paradigm (Salek-Haddadi et 

al., 2003; Hamandi et al., 2004). Similarly then, perhaps a more reliable classification of the 

underlying neural abnormality in an individual TI patient could be obtained by integrating fMRI 

with EEG/MEG data so that the differential sensitivity to potential spatial and temporal 

signatures of TI, respectively, could be exploited. Unfortunately, access to facilities, scanning 
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costs and limited expertise in the different human neuroimaging methods might limit the 

practicality of multimodal recording. 

Regarding the second issue of inconsistent results across neuroimaging studies, we note 

that different research groups sometimes reported contradictory results (e.g. Hoke et al., 1989; 

Jacobson et al., 1991; Attias et al., 1993), and occasionally even the same group fails to replicate 

their own earlier findings (e.g. Weisz et al., 2007a; Kahlbrock and Weisz, 2008). Perhaps one 

reason for this is that TI is a complex disorder with a diverse aetiology and symptoms. Poor 

replicability could simply be indicative of the variability between TI patients. Hearing status is 

one of the key characteristics commonly associated with TI and would obviously influence 

patterns of auditory activity, yet most studies do not report this information while the ones that 

do average auditory responses from patients with varying degrees of hearing loss (Attias et al., 

1993), rather than factor out the contribution of hearing loss (c.f. Diesch et al., 2004). An 

additional comorbid symptom that might also exert a significant influence on patterns of auditory 

activity includes hypersensitivity to external sounds (hyperacusis). The importance of controlling 

for hyperacusis has been highlighted in a recent conference report demonstrating that the 

increase in neuronal excitability to sounds in TI patients may be ascribed to hyperacusis rather

than to a mechanism specifically related to TI (Gu et al., 2008). It is therefore recommended that 

the characteristics of patients forming a ‘TI group’ are as closely matched as possible, in terms of 

aetiology, duration, severity and laterality of TI, age, audiometric profile and other relevant 

comorbid factors such as depression, anxiety as well as hyperacusis. A related consideration 

affecting consistency of research outcomes is that of comparing TI patients to an appropriate 

control group. In many of the studies reviewed here, TI patients with varying degrees of hearing 
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impairment were compared to a control group of normally hearing participants (e.g. Weisz et al., 

2005a; Wienbruch et al., 2006; Weisz et al., 2007a). Clearly, these results cannot separate out 

those altered patterns of neural activity due to hearing loss from those specifically attributable to 

TI. Looking back at some of the early days of human functional neuroimaging in TI, Lockwood 

et al. (1998) clearly emphasised the need for proper control groups to decide whether plastic 

changes were the result of TI, cochlear damage, or a combination of the two and yet, more than a 

decade on, most studies still employ controls that are not audiometrically matched to their TI 

patients 

Given such diversity across participants, we might even consider the merits of moving 

away from group comparisons all together and instead report individual cases. A case study 

approach would provide a detailed systematic assessment of the perceptual characteristics of TI 

(especially its spectrum and its loudness) and psychological attributes of the individual (c.f. 

Jastreboff, 1990) and attempt to relate these to the recorded patterns of neural abnormality. In the 

field of cognitive neuropsychology, the case study approach has certainly proved to be a 

powerful scientific tool for testing hypotheses relating to a specific cognitive model. Due to the 

heterogeneity of TI patients, this approach is potentially more informative than when data from a 

group of poorly matched TI patients are averaged together. In combination with the multimodal 

neuroimaging approach discussed earlier, the case study could be a powerful tool for providing 

strong empirical support for or (perhaps more importantly) refutation of a particular hypothesis 

about TI.

Another factor with the potential to determine inconsistency concerns the power of the 

statistical test to accept the null hypothesis when it should have been rejected (Type II error). 

Increasing sample size is the most common way to increase statistical power, although sensitivity 
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can also be improved by increasing the reliability of the individual measure or by using well-

matched controls. With respect to sample size, many neuroimaging studies draw conclusions 

about the underlying TI pathophysiology using group statistics with fewer than ten patients (e.g. 

Giraud et al., 1999; Kadner et al., 2002; Lockwood et al., 1998; 2001; Osaki et al., 2005). While 

such analyses might be adequate for characterising the common pathophysiology in that 

particular sample of patients, little can be inferred about the mechanisms underlying TI in the 

wider population. In statistical terms, this distinction is one of ‘fixed’ versus ‘random’ effects. 

Fixed and random components describe the variability in the brain signal. The fixed effect 

component represents the common effect among patients, whereas the random effect shows the 

variation of activation between different patients. Only random effects can lead to general 

conclusions but, to achieve this, a large number of patients (> 20, Thirion et al. (2007)) are 

needed to provide high confidence in the parameter estimates of the statistical model. Small 

numbers of patients lead to low degrees of freedom in variance estimation and yet such small 

groups are common in human neuroimaging studies of TI. 

The final factor concerns the different approaches to data analysis across research sites, 

especially for EEG and MEG data. Whereas a common approach in fMRI is to localise stimulus-

related BOLD responses using the general linear model, MEG and EEG researchers are faced 

with a range of different choices about the form of the input data and the analysis method. The 

input data can be either transient, stimulus-evoked responses within a selected time window or 

more sustained, stimulus-induced responses. The source of this response can then be estimated 

using dipole fitting or distributed source modelling. The latter includes minimum norm 

(Hammalainen and Ilmoniemi, 1994), LORETA (Pascal Marqui et al., 1994), MUSIC (Mosher et 

al., 1992), DICS (Gross et al., 2001) and beamformers (Robinson and Vrba, 1999; Sekihara et 
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al., 1999); each of which makes a different set of fundamental underlying assumptions. Thus, in 

making choices to solve the inverse problem, variability is introduced to the outcome of the 

analysis.

With these recommendations in mind, we hope that the full potential of non-invasive 

neuroimaging techniques will soon be realised to add real scientific value in the search for 

models of TI pathophysiology. The goal to better inform the development of new treatments is 

one that should motivate this worthwhile endeavour.
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Figure legends

Figure 1 The mean association between the profile of hearing loss and TI spectrum (estimated 

from individual data reported by Konig et al., 2006). The mean function represents the data from 

24 patients who matched the dominant pitch of their TI to a single frequency tone. TI pitch is 

represented by the vertical bars. The arrow points to the mean audiogram edge of the hearing 

loss. Note that most patients matched their sensation to the region of hearing loss.

Figure 2 Schematic representations of four different patterns of spontaneous neural activity for 

an ensemble of six cortical neurons (lower traces) and the associated hypothetical MEG/EEG 

signal (upper traces): A) stochastic spiking activity generates no related MEG or EEG activity; 

B) stochastic bursting activity also elicits no related signal that can be detected macroscopically; 

C) synchronous spiking activity also generates an aperiodic MEG/EEG signal; D) synchronous 

bursting activity also generates an aperiodic MEG/EEG signal possibly of higher amplitude than 

in C.

Figure 3 A) Abnormal asymmetry of subcortical activation in response to a bilaterally presented 

noise masker in a patient with right-sided TI (left panel) and a healthy control (right panel). 

Arrows point to the inferior colliculi. B) The saturation and physiological masking models 

describe possible physiological causes for the relative abnormally weak activation in the side 

contralateral to the TI. Comparisons are made to a control model in the absence of TI. For each 

model, the grey bars represent the relative magnitudes of activity associated with habitual TI 

‘sound off’ and ‘sound on’ conditions. Dark grey represents residual TI-related activity and light 
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grey represents sound-related activity. In the saturation model, the dashed lines represent the 

minimum limit for BOLD (fMRI) activity. The black bars show the resulting differential 

activation determined by subtracting the total neural activity in the ‘sound off’ condition from 

the ‘sound on’ condition (Melcher et al., (2000), modified with permission from The American 

Physiological Society).

Figure 4 A thalamocortical circuit proposed to underpin symptoms associated with a number of 

neurological disorders, including TI. Two interlinked thalamocortical circuits generate low (left) 

and high (right) frequency spontaneous oscillatory activity. Within each circuit, a specific 

thalamocortical pathway comprises relay neurons (black dotted line) that project from the 

thalamus and synapse onto cortical pyramidal neurons (black solid line) and cortical inhibitory 

interneurons (upper grey dashed line). A non-specific thalamocortical pathway comprises relay 

neurons (grey solid line) that project from thalamus and synapse onto cortical neurons in the 

superficial layers. Both pathways provide direct thalamic feedback in a collateral projection to 

the reticular thalamus (lower grey dashed lines). Indirect thalamic feedback occurs in a return 

pathway from pyramidal cortical neurons that synapse onto the thalamic input neurons and onto 

the reticular thalamic neurons. Abnormal spontaneous firing is proposed to entrain intrinsic 

biorhythmic activity that generates TI. Redrawn from Llinas et al., 1999 (with permission).

Figure 5 MEG Power spectrum averaged over all sensors (n=148) showing abnormal resting 

state activity in TI patients compared to healthy controls. Note the significant increase in low 

frequency power around 2 Hz (delta band) and the decrease in power at 10 Hz (alpha band). 

From Weisz et al. (2005). 
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Figure 6 MEG power spectrum representing activity from all sensors (n=148) from a single TI 

patient showing the effect of masking on resting state brain activity. Note the reduction in low 

frequency power at 8Hz (alpha band) when the masking sound was applied. Redrawn from 

Llinas et al., 2005 with permission.

Figure 7 Two schematic representations showing the relationship between hearing profile and 

tonotopic representation of frequency in the central auditory system for normal hearing 

thresholds (A), and steeply sloping high frequency hearing loss (B). In A, a normal audiometric 

profile is represented cortically in bands of neurons with iso-frequency tuning curves. This is 

schematically portrayed here with tuning shifting progressively in octave bandwidths. In B, high 

frequency hearing loss distorts this linear progression with an over-representation of the lesion-

edge frequency. 

Figure 8 Shift in the cortical representation of the frequency corresponding to the dominant TI 

pitch, as assessed by MEG source localisation (Muhlnickel et al., 1998; Copyright (1998) 

Proceedings of the National Academy of Sciences, U.S.A reproduced with kind permission). The 

upper panel shows the result of dipole fitting for the contralateral response to four single-

frequency tones in a patient with left lateralised TI with a pitch of 6000 Hz. The lower panel 

shows the result for one healthy control. The triangle represents the location of the response to 

the tone that was matched to the TI pitch. The circles and the line represent the standard tone 

location and trajectory of the dipole locations respectively. 
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Figure 9 The key limbic system structures postulated to be involved in TI perception: anterior 

cingulate (ACC), hippocampus (Hi), and amygdala (Am). Additionally prefrontal cortex (PFC) 

and auditory cortex (AC) are labelled since these are often also implicated in the neural basis of 

TI.



Dear Prof Eggermont,

My two co-authors and I would like to thank the second reviewer for further comments and also 
for your decision to reconsider the manuscript. We have now made further substantial changes 
while keeping in mind the main concern of the reviewer. Below, we provide a comprehensive set 
of responses explaining how we have dealt with each comment. 

Reviewer #2: Adjamian et al., "The mechanisms of tinnitus: Perspectives from human functional 
neuroimaging"

General Comments
The organization of the revised manuscript has been streamlined and condensed to a fair 
degree and the manuscript reads better than before.  However, the manuscript still needs a 
good deal of work in order to serve as a coherent and synthetic review of the imaging 
literature dealing with tinnitus.  The review should focus more tightly on what functional 
imaging can tell us about the sources of tinnitus in the brain and potential mechanism.  
There is still far too much emphasis on reviewing the electrophysiological studies and less 
space devoted to a detailed analysis of prior human imaging studies.  

We appreciate this stance by the reviewer regarding the inclusion of animal studies in a review of 
human neuroimaging literature. However, when discussing the mechanisms of tinnitus, some 
references to previous animal studies are unavoidable because most of our current knowledge 
regarding the pathophysiology of tinnitus has come from studies in animals and also because 
most authors of neuroimaging studies interpret their findings in the light of these same animal 
studies. 

To address the reviewer’s concern in our revised manuscript, we have taken a number of steps. 

Firstly, in each of the three main sections reporting on the three potential mechanisms we have 
renamed the first subheading ‘Guidance from animal electrophysiological studies’. Our aim here 
is not to provide a comprehensive review of the animal work itself, but to provide only a relevant 
background to the interpretation of the human neuroimaging work. Consequently these sections 
have been radically rewritten, as well as shortened in length. We highlight the relevance and 
significance of the findings for human neuroimaging studies.

These changes are too lengthy to explain in full in this cover letter, but we provide an example of 
the emphasis on the relevance of the animal work to human studies. With respect to increased 
spontaneous stochastic firing rate on page 10, we include the following paragraph: “The 
implications of this result for human neuroimaging are worth clarifying. If an abnormal 
spontaneous stochastic firing rate occurs in only a small part of the tonotopic map, then the 
change in the population response may be too little to perturb the neuroimaging signal. In fMRI 
for example, one voxel would typically therefore encompass the entire nucleus of the inferior 
colliculus because it has a volume of about 0.032 cm3 (equivalent to the volume of a cube with a 
3 mm side). Although frequency specificity within primary auditory fields can in principle be 
distinguished using fMRI, statistical sensitivity to fine-grained changes would require very 
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careful individual analysis. Thus, at best, human neuroimaging is most likely to be sensitive to 
gross changes in spontaneous firing involving a spatially extensive population of neurons.” The 
implications of animal measurements of temporal firing pattern and tonotopic reorganisation are 
also explained in terms of their application to human neuroimaging studies.

Secondly, at the start of the review where we make initial reference to the guiding principles 
from animal electrophysiological studies, we always provide some summary conclusion on its 
relevance to human neuroimaging studies of tinnitus. For example in the section ‘Guiding 
principles from animal studies’ on pages 5-7, when reporting the four caveats limiting the direct 
linkage between animal findings and human results we end each paragraph with the following 
new statements:

1) Thus, while noise trauma may provide a more appropriate model for TI in humans, its use in 
the laboratory is not so popular. 

2) Thus, abnormal patterns of activity observed during the anaesthetised state may not be 
directly applicable to the awake state (either animals or humans).

3) While some conditioning paradigms can provide estimates of pitch and loudness (Jastreboff 
and Sasaki, 1994), a complete characterisation of the perceptual and psychological attributes 
of TI cannot be established in laboratory animals. One clear advantage of working with 
people is their ability to introspect and report on their own perceptions and feelings.

4) Thus, neural phenomena observed in the animal model may not always be detectable in 
humans using non-invasive neuroimaging methods.

While many of the important imaging studies are reviewed, the evaluations tend to be 
somewhat superficial.  Comments are sometimes included about the imaging technique or 
the results, but it is sometimes difficult to judge the significance or relevance of the 
comments.  The manuscript often contains experimental details (# of subjects) that seem to 
be unnecessary for a review paper. 

We have now removed any experimental detail that is not important to the interpretation of the 
results. Sometimes the laterality of the TI percept was reported even when the results of the 
neuroimaging studies were not interpreted with respect to the TI laterality. In these cases, details 
of laterality of TI have been deleted. 

We have also cast a more critical eye on each study and clarified the scientific relevance of our 
comments by adding further qualification at various points throughout the manuscript. For 
example on page 27 we say: “However, no data were reported for gamma-band activity and so 
this particular aspect of the model prediction was not tested”. As a further example, on page 32
we say: “While 2 kHz corresponded to the edge of the hearing loss, the TI pitch was matched 
near the peak of hearing loss, not the lesion edge. Therefore, this result is not fully explained by 
the tonotopic reorganisation model of TI.” 

We also make general critical comments about the methodology, for example, regarding 
statistical power to make general conclusion from a small sample of data. On page 13 we say:
“For any conclusion to have some diagnostic or predictive validity, sufficient statistical power is 



required to support the inference that the mean effect over the population is significantly greater 
than under the null hypothesis. This typically requires a random-effect analysis in which the 
subject-to-subject response variability can be reliably estimated and for this the dataset should 
ideally include more than 20 subjects (Thirion et al., 2007). A majority of functional 
neuroimaging studies fail to reach such numbers and to illustrate this point, we highlight sample 
size throughout our review.”

The manuscript could be improved by synthesis of prior imaging studies of tinnitus.  

We have addressed this suggestion by emphasizing where appropriate what is the overall 
conclusion to be gained from the different investigations on one aspect of TI. For example, for 
the lidocaine studies on page 17 we say: “Thus, although the precise cortical locations of the 
sites of lidocaine action appear to vary across different reports, these results tend to confirm a 
pivotal role for extra-auditory cortex in the perception of TI, including regions engaged in 
multisensory integration and cognitive function.” Other similar inclusions are inserted 
throughout the manuscript which are too many to list here.

The sections on animal electrophysiology do not really add much other than providing 
relevant references indicating that spontaneous rate can increase in many areas of the 
brain or that c-fos changes or that synchrony has been observed.  Moreover, the review is 
incomplete by failing to mention all the studies by Kaltenbach in the dorsal cochlear 
nucleus.  The Kaltenbach studies provide strong support for increased spontaneous rate in 
the dorsal cochlear nucleus, but these studies are not mentioned.  The dorsal cochlear 
nucleus results are relevant to somatic tinnitus.  There are problems with the dorsal 
cochlea nucleus model.  For example spontaneous rates increase 4-7 days after cochlear 
insult, long after tinnitus might be expected to start based on Heffner's behavioral work. 
Including the c-fos studies in the electrophysiology section seems out of place.  C-Fos 
measures the expression of a protein that may or may not be linked to the degree of neural 
activity.  Rather than trying to review and summarize all the electrophysiological studies in 
a critical and comprehensive manner, it would make more sense to simply discuss the 3 
general spontaneous activity models (p 8) of tinnitus.  

This concern is partly dealt with in response to the first point regarding our review of the animal 
work. We have shortened these sections so that they are more focused on issues relevant to 
human neuroimaging studies. While animal studies of DCN activity have provided important 
insight into the mechanisms of tinnitus, DCN activity is barely detectable in humans by non-
invasive imaging modalities. For this reason, animal studies of DCN are not reviewed. See page 
20: “We do not provide a comprehensive review of studies that examine these cross-modal 
mechanisms because activity within the putative origin of this type of TI aetiology (namely 
dorsal cochlear nucleus) is barely detectable using human neuroimaging techniques. Instead we 
illustrate some of the neural changes that occur in higher centres of the auditory system that 
receive inputs from the dorsal cochlear nucleus.”



The Conclusion, while pointing out some of the shortcomings of previous studies and 
potential opportunities for future research, offers little in the way of coherent summary of 
previous neuroimaging studies of tinnitus.  

We have significantly revised the conclusion to clearly state the contribution of neuroimaging to 
tinnitus. On page 42 we state “The results of non-invasive human neuroimaging studies have 
validated the claim that TI is associated with changes in structure and function at various sites in 
the central auditory system. One of the significant contributions of human neuroimaging 
concerns its ability to define brain centres involved in the psychological aspects of the disorder, 
such as the limbic system. Further work to determine correlations between the amplitude of the 
response in these structures and the reported scores for TI annoyance will be important for 
corroborating a neurophysiological model of the TI network. Nevertheless, it remains a challenge 
to synthesise the current body of data into a set of firm conclusions regarding the key 
mechanisms underpinning TI within the auditory system.”

In the remainder of the concluding section we concentrated on possible reasons for the
challenges in synthesising the current body of data into a set of firm conclusions regarding the
key mechanisms underpinning TI within the auditory system and suggest ways in which future 
imaging studies can improve on past methods.  

Specific Comments

Abstract:  This comment adds little and can be eliminated ".that has been so far derived 
primarily from animal research."

This sentence has now been removed

p. 3 Introduction:  This number seems high and it is confusing since it is unclear if it is 
20% of the population or 20% of those that experience tinnitus.  Indicate the percent that 
seek medical treatment ".for about 20%  ".

We have rewritten the sentence on page 3 so as to be clearer: “Tinnitus is prevalent in the general 
population, with approximately 10-15% of people experiencing it in some form. For about 20% 
of people experiencing tinnitus, it is sufficiently bothersome to seek treatment from their doctor 
or hearing specialist”

p. 8:  The Gu et al 2008 citation is an abstract and should not be included in a review 
paper. 

We have removed the reference to the Gu et al. conference report on page 8. However, if we 
remove all reference to the study reported by Gu et al. then there is no human neuroimaging 
evidence for the important contribution of hyperacusis to the hyperexcitability previously 
attributed to tinnitus alone. In the discussion on page 44 there is some brief mention of this with
clarification that this was a conference report. “The importance of controlling for hyperacusis has 
been highlighted in a recent conference report demonstrating that the increase in neuronal 



excitability to sounds in TI patients may be ascribed to hyperacusis rather than to a mechanism 
specifically related to TI (Gu et al., 2008).”

p. 12:  The manuscript states "Compounds that are abundant in the body and have a short 
half life are typically used to measure functional activity".  This is not entirely accurate.  
Some tracers are not abundant in the body, but are used because they target specific 
structures such as dopamine or dopamine receptor subtypes.  For brain imaging studies, an 
important requirement is that the tracer must cross the blood brain barrier.  Some tracers 
are exogenous drugs, such as benzodiazepine which bind to specific receptors in the brain.  

We have now reworded this sentence on page 11 to read: “Various compounds that cross the 
blood brain barrier and have a short half life are typically used to measure functional activity.”

p. 15: The Melcher et al. 2000 paper that is widely cited has not been replicated by the 
author or other labs.  One reason for this is that the magnitude of a sound evoked response 
may be affected by hyperacusis as well as tinnitus. 

We have added sentence to refer to the possibility of hyperacusis affecting the results and say the 
following on page 14: “Within this model it is also plausible that hyperacusis leading to an 
abnormally large response to external sounds may also partly explain the limits on overall 
activity in patients with TI.”

p. 18: "rTMS..principles of electromagnetism to inhibit neural activity by.".  This 
explanation seems overly simplistic.  The magnetic field passing through the skull creates a 
transient current flux with a complex entry and exit pattern that may both excite and 
inhibit neurons.  Stating that that it "inhibits neural activity" only makes little sense.  

The precise mechanism by which TMS suppresses tinnitus is unknown. We have changed the 
word inhibit to “alter” on page 19.

p. 18-20:  Much of this section is devoted to rTMS studies that are mainly related to 
tinnitus, but not particularly relevant to brain imaging of tinnitus.  A good deal of this 
could be eliminated.  

We have done as suggested and significantly shortened this section. We have added the 
following sentence on page 19 to point out the significance of TMS for neuroimaging: “When TI 
co-occurs with a hearing loss, it is not possible to clearly attribute the abnormal activity to TI. 
However, if the subsequent rTMS applied to the site of maximal TI-related activity is successful 
in reducing TI, then this finding increases confidence that this cortical site plays a causal role in 
TI.”
We provide only two examples of this approach (Plewnia et al., 2007 and de Ridder et al., 2004). 
We conclude this section on page 20 by saying “Although requiring replication, these two rTMS 
studies point to the essential role of auditory cortex and regions of multisensory integration in the 
perception of TI.”



p. 21.  "Two PET studies are worth mentioning here. Cacace et al. (1999) reported that one 
patient with left-sided deafness following neurosurgery was able to elicit left-sided TI by 
performing repetitive finger-thumb opposition tapping movement with the right hand."  
This statement is incorrect; the Cacace study utilized fMRI not PET to identify patterns of 
activity.  

We have now corrected this mistake on page 21.

p. 24: "A link between the constancy of the TI percept and coincidence across neurons of 
their ongoing spontaneous spiking activity is taken as evidence for a direct relationship 
between the perceptual and neural phenomena."  This statement is not particularly clear 
or entirely accurate.  Many regions of the brain show coherence in their neural activity 
firing patterns, but coherence per se may not be sufficient to generate tinnitus if the 
coherence occurs in nonauditory areas. 

We have now removed this sentence from the manuscript.

p. 24:  The text mentions figures 3c & 3d, but these figures were not present and the Figure 
legend does not mention the figures.  

This should be Figures 2c & 2d which we have now corrected.

p. 26: There is not need for explaining the obvious "Hyperpolarisation describes a change 
in membrane potential that makes it more negative (less positive)."

We have now removed this sentence.

p. 27: This whole section deals with oscillatory circuits in the cortex, but then suddenly 
jumps to auditory nerve fiber data in the cat to invoke the edge model of tinnitus "This led 
some investigators to speculate that tinnitus was not the result of increased spontaneous 
activity per se but rather a neural "edge effect" produced by contrasting cochlear regions 
having normal and low levels of activity (Liberman and Kiang, 1978)."  It is not necessary 
to invoke the auditory nerve here. 

We have removed the reference to auditory nerve data and rewritten the previous sentence on 
page 26-27: “Llinas et al. (2005) speculate that tinnitus is not the result of increased spontaneous 
activity per se. Rather, TI is considered to be a neural "edge effect" that originates in the cochlea 
at the point of contrasting ‘normal’ and ‘low’ levels of activity and is transmitted throughout 
tonotopic regions of the ascending central auditory system.”

p. 42: "..while sounds typically engage activate this network, a tone." delete activate. 

The word ‘activate’ has been deleted.

p. 43: "one octaves." change to singular, octave. 



This correction has been made.

p. 43: "Langers and Melcher (2008)"; conference reports do not belong in review papers 
since there is no way to independently evaluate what was reported and since the final 
results may differ from what was presented at the conference.

We have removed this paragraph on page 41 and replaced it with the brief sentence: “However, 
to date we could find only one unpublished report of this approach (Langers and Melcher, 2008
conference report).”
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