1,698 research outputs found

    Carbon Capture Clustering: the Case for Coordinated Approaches to Address Freshwater Use Concerns

    Get PDF
    Carbon capture and storage (CCS) will be a key technology for reducing emissions from fossil-fuelled electricity generation. The UK is developing demonstration plants and UK Government strategy proposes the clustering of CCS facilities, having identified significant cost-savings from shared pipeline infrastructure. However, cooling water use from CCS power plants are almost double those of conventional plants. There are concerns about the volumes of freshwater used and vulnerability to low river flows, particularly in areas identified for CCS clusters. Two innovative approaches may reduce water use in CCS clusters by exploiting synergies with other infrastructures; district heating and municipal wastewater. Our analysis indicates that cooling water reductions from district heating may be feasible in the northwest, but less likely in Yorkshire. We also find that across the UK there are numerous, sufficiently large wastewater treatment plants capable of providing alternative cooling water sources for large power plants. Feasibility of these promising options will be highly contextual, require detailed analysis and may face economic and regulatory barriers. Historically, ad-hoc development of energy infrastructure has struggled to exploit such synergies, but may now be facilitated by the clustering of CCS facilities

    About the stability of the dodecatoplet

    Full text link
    A new investigation is done of the possibility of binding the "dodecatoplet", a system of six top quarks and six top antiquarks, using the Yukawa potential mediated by Higgs exchange. A simple variational method gives a upper bound close to that recently estimated in a mean-field calculation. It is supplemented by a lower bound provided by identities among the Hamiltonians describing the system and its subsystems.Comment: 5 pages, two figures merged, refs. added, typos correcte

    Monotonicity of quantum ground state energies: Bosonic atoms and stars

    Full text link
    The N-dependence of the non-relativistic bosonic ground state energy is studied for quantum N-body systems with either Coulomb or Newton interactions. The Coulomb systems are "bosonic atoms," with their nucleus fixed, and the Newton systems are "bosonic stars". In either case there exists some third order polynomial in N such that the ratio of the ground state energy to the respective polynomial grows monotonically in N. Some applications of these new monotonicity results are discussed

    Quantum gates with neutral atoms: Controlling collisional interactions in time dependent traps

    Get PDF
    We theoretically study specific schemes for performing a fundamental two-qubit quantum gate via controlled atomic collisions by switching microscopic potentials. In particular we calculate the fidelity of a gate operation for a configuration where a potential barrier between two atoms is instantaneously removed and restored after a certain time. Possible implementations could be based on microtraps created by magnetic and electric fields, or potentials induced by laser light.Comment: 10 pages, 3 figure

    Migration promotes plasmid stability under spatially heterogeneous positive selection

    Get PDF
    Bacteria-plasmid associations can be mutualistic or antagonistic depending on the strength of positive selection for plasmid-encoded genes, with contrasting outcomes for plasmid stability. In mutualistic environments, plasmids are swept to high frequency by positive selection, increasing the likelihood of compensatory evolution to ameliorate the plasmid cost, which promotes long-term stability. In antagonistic environments, plasmids are purged by negative selection, reducing the probability of compensatory evolution and driving their extinction. Here we show, using experimental evolution of Pseudomonas fluorescens and the mercury-resistance plasmid, pQBR103, that migration promotes plasmid stability in spatially heterogeneous selection environments. Specifically, migration from mutualistic environments, by increasing both the frequency of the plasmid and the supply of compensatory mutations, stabilized plasmids in antagonistic environments where, without migration, they approached extinction. These data suggest that spatially heterogeneous positive selection, which is common in natural environments, coupled with migration helps to explain the stability of plasmids and the ecologically important genes that they encode

    Competitive species interactions constrain abiotic adaptation in a bacterial soil community

    Get PDF
    Studies of abiotic adaptation often consider single species in isolation, yet natural communities contain many coexisting species which could limit or promote abiotic adaptation. Here we show, using soil bacterial communities, that evolving in the presence of a competitor constrained abiotic adaptation. Specifically, Pseudomonas fluorescens evolved alone was fitter than P. fluorescens evolved alongside Pseudomonas putida, when P. putida was absent. Genome analyses indicated this was due to mutation of the acetate scavenger actP, which occurred exclusively, and almost universally, in single‐species‐evolved clones. actP disruption was associated with increased growth in soil compared with wild‐type actP, but this benefit was abolished when P. putida was present, suggesting a role for carbon scavenging transporters in species interactions, possibly through nutrient competition. Our results show that competitive species interactions can limit the evolutionary response to abiotic selection, because the fitness benefits of abiotic adaptive mutations were negated in more complex communities

    Coherence as ultrashort pulse train generator

    Full text link
    Intense, well-controlled regular light pulse trains start to play a crucial role in many fields of physics. We theoretically demonstrate a very simple and robust technique for generating such periodic ultrashort pulses from a continuous probe wave which propagates in a dispersive thermal gas media

    Anomalies on orbifolds with gauge symmetry breaking

    Get PDF
    We embed two 4D chiral multiplets of opposite representations in the 5D N=2 SU(N+K)SU(N+K) gauge theory compactified on an orbifold S1/(Z2×Z2â€Č)S^1/(Z_2\times Z'_2). There are two types of orbifold boundary conditions in the extra dimension to obtain the 4D N=1 SU(N)×SU(K)×U(1)SU(N)\times SU(K)\times U(1) gauge theory from the bulk: in Type I, one has the bulk gauge group at y=0y=0 and the unbroken gauge group at y=πR/2y=\pi R/2 while in Type II, one has the unbroken gauge group at both fixed points. In both types of orbifold boundary conditions, we consider the zero mode(s) as coming from a bulk (K+N)(K+N)-plet and brane fields at the fixed point(s) with the unbroken gauge group. We check the consistency of this embedding of fields by the localized anomalies and the localized FI terms. We show that the localized anomalies in Type I are cancelled exactly by the introduction of a bulk Chern-Simons term. On the other hand, in some class of Type II, the Chern-Simons term is not enough to cancel all localized anomalies even if they are globally vanishing. We also find that for the consistent embedding of brane fields, there appear only the localized log FI terms at the fixed point(s) with a U(1) factor.Comment: LaTeX file of 19 pages with no figure, published versio

    Rearranging Edgeworth-Cornish-Fisher Expansions

    Full text link
    This paper applies a regularization procedure called increasing rearrangement to monotonize Edgeworth and Cornish-Fisher expansions and any other related approximations of distribution and quantile functions of sample statistics. Besides satisfying the logical monotonicity, required of distribution and quantile functions, the procedure often delivers strikingly better approximations to the distribution and quantile functions of the sample mean than the original Edgeworth-Cornish-Fisher expansions.Comment: 17 pages, 3 figure

    Weakly-Bound Three-Body Systems with No Bound Subsystems

    Get PDF
    We investigate the domain of coupling constants which achieve binding for a 3-body system, while none of the 2-body subsystems is bound. We derive some general properties of the shape of the domain, and rigorous upper bounds on its size, using a Hall--Post decomposition of the Hamiltonian. Numerical illustrations are provided in the case of a Yukawa potential, using a simple variational method.Comment: gzipped ps with 11 figures included. To appear in Phys. Rev.
    • 

    corecore