11,663 research outputs found

    NTF: Soldering Technology Development for Cryogenics

    Get PDF
    The advent of the National Transonic Facility (NTF) brought about a new application for an old joining method, soldering. Soldering for use at cryogenic temperatures requires that solders remain ductile and free from tin-pest (grey tin), have toughness to withstand aerodynamic loads associated with flight research, and maintain their surface finishes. Solders are used to attach 347 Stainless-Steel tubing in surface grooves of models. The solder must fill up the gap and metallurgically bound to the tubing and model. Cryogenic temperatures require that only specific materials for models can be used, including: Vasco Max 200 CVM, lescalloy A-286 Vac Arc, pH 13-8 Mo. Solders identified for testing at this time are: 50% Sn - 49.5% Pb - 0.5% Sb, 95% Sn - 5% Sb, 50% In 50% Pb, and 37.5% Sn - 37.5% Pb - 25% In. With these materials and solders, it is necessary to determine their solderability. After solderability is determined, tube/groove specimens are fabricated and stressed under cryogenic temperatures. Compatible solders are then used for acutual models

    Secondary gamma-ray production in a coded aperture mask

    Get PDF
    The application of the coded aperture mask to high energy gamma-ray astronomy will provide the capability of locating a cosmic gamma-ray point source with a precision of a few arc-minutes above 20 MeV. Recent tests using a mask in conjunction with drift chamber detectors have shown that the expected point spread function is achieved over an acceptance cone of 25 deg. A telescope employing this technique differs from a conventional telescope only in that the presence of the mask modifies the radiation field in the vicinity of the detection plane. In addition to reducing the primary photon flux incident on the detector by absorption in the mask elements, the mask will also be a secondary radiator of gamma-rays. The various background components in a CAMTRAC (Coded Aperture Mask Track Chamber) telescope are considered. Monte-Carlo calculations are compared with recent measurements obtained using a prototype instrument in a tagged photon beam line

    Vortices in a Bose-Einstein Condensate

    Full text link
    We have created vortices in two-component Bose-Einstein condensates. The vortex state was created through a coherent process involving the spatial and temporal control of interconversion between the two components. Using an interference technique, we map the phase of the vortex state to confirm that it possesses angular momentum. We can create vortices in either of the two components and have observed differences in the dynamics and stability.Comment: 4 pages with 3 figure

    Taming the Runaway Problem of Inflationary Landscapes

    Full text link
    A wide variety of vacua, and their cosmological realization, may provide an explanation for the apparently anthropic choices of some parameters of particle physics and cosmology. If the probability on various parameters is weighted by volume, a flat potential for slow-roll inflation is also naturally understood, since the flatter the potential the larger the volume of the sub-universe. However, such inflationary landscapes have a serious problem, predicting an environment that makes it exponentially hard for observers to exist and giving an exponentially small probability for a moderate universe like ours. A general solution to this problem is proposed, and is illustrated in the context of inflaton decay and leptogenesis, leading to an upper bound on the reheating temperature in our sub-universe. In a particular scenario of chaotic inflation and non-thermal leptogenesis, predictions can be made for the size of CP violating phases, the rate of neutrinoless double beta decay and, in the case of theories with gauge-mediated weak scale supersymmetry, for the fundamental scale of supersymmetry breaking.Comment: 31 pages, including 3 figure

    Operating characteristics of a prototype high energy gamma-ray telescope

    Get PDF
    The field of gamma-ray astronomy in the energy range from ten to several hundred MeV is severely limited by the angular resolution that can be achieved by present instruments. The identification of some of the point sources found by the COS-B mission and the resolution of detailed structure existing in those sources may depend on the development of a new class of instrument. The coded aperture mask telescope, used successfully at X-ray energies hold the promise of being such an instrument. A prototype coded aperture telescope was operated in a tagged photon beam ranging in energy from 23 to 123 MeV. The purpose of the experiment was to demonstrate the feasibility of operating a coded aperture mask telescope in this energy region. Some preliminary results and conclusions drawn from some of the data resulting from this experiment are presented

    Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model

    Full text link
    This paper deals with a one--dimensional model for granular materials, which boils down to an inelastic version of the Kac kinetic equation, with inelasticity parameter p>0p>0. In particular, the paper provides bounds for certain distances -- such as specific weighted χ\chi--distances and the Kolmogorov distance -- between the solution of that equation and the limit. It is assumed that the even part of the initial datum (which determines the asymptotic properties of the solution) belongs to the domain of normal attraction of a symmetric stable distribution with characteristic exponent \a=2/(1+p). With such initial data, it turns out that the limit exists and is just the aforementioned stable distribution. A necessary condition for the relaxation to equilibrium is also proved. Some bounds are obtained without introducing any extra--condition. Sharper bounds, of an exponential type, are exhibited in the presence of additional assumptions concerning either the behaviour, near to the origin, of the initial characteristic function, or the behaviour, at infinity, of the initial probability distribution function

    Communications Biophysics

    Get PDF
    Contains research objectives and reports on three research projects.U.S. Air Force under Contract AF19(604)-411

    Sensing electric fields using single diamond spins

    Full text link
    The ability to sensitively detect charges under ambient conditions would be a fascinating new tool benefitting a wide range of researchers across disciplines. However, most current techniques are limited to low-temperature methods like single-electron transistors (SET), single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we open up a new quantum metrology technique demonstrating precision electric field measurement using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC electric field sensitivity reaching ~ 140V/cm/\surd Hz has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of ~ 150 nm from our spin sensor with averaging for one second. By careful analysis of the electronic structure of the defect centre, we show how an applied magnetic field influences the electric field sensing properties. By this we demonstrate that diamond defect centre spins can be switched between electric and magnetic field sensing modes and identify suitable parameter ranges for both detector schemes. By combining magnetic and electric field sensitivity, nanoscale detection and ambient operation our study opens up new frontiers in imaging and sensing applications ranging from material science to bioimaging

    Vortex precession in Bose-Einstein condensates: observations with filled and empty cores

    Get PDF
    We have observed and characterized the dynamics of singly quantized vortices in dilute-gas Bose-Einstein condensates. Our condensates are produced in a superposition of two internal states of 87Rb, with one state supporting a vortex and the other filling the vortex core. Subsequently, the state filling the core can be partially or completely removed, reducing the radius of the core by as much as a factor of 13, all the way down to its bare value. The corresponding superfluid rotation rates, evaluated at the core radius, vary by a factor of 150, but the precession frequency of the vortex core about the condensate axis changes by only a factor of two.Comment: 4 pages, 3 figure

    Supersymmetric Monojets at the Large Hadron Collider

    Get PDF
    Supersymmetric monojets may be produced at the Large Hadron Collider by the process qg -> squark neutralino_1 -> q neutralino_1 neutralino_1, leading to a jet recoiling against missing transverse momentum. We discuss the feasibility and utility of the supersymmetric monojet signal. In particular, we examine the possible precision with which one can ascertain the neutralino_1-squark-quark coupling via the rate for monojet events. Such a coupling contains information on the composition of the neutralino_1 and helps bound dark matter direct detection cross-sections and the dark matter relic density of the neutralino_1. It also provides a check of the supersymmetric relation between gauge couplings and gaugino-quark-squark couplings.Comment: 46 pages, 10 figures. The appendix has been rewritten to correct an error that appears in all previous versions of the appendix. This error has no effect on the results in the main body of the pape
    corecore