365 research outputs found

    Photorealistic ray tracing of free-space invisibility cloaks made of uniaxial dielectrics

    Get PDF
    The design rules of transformation optics generally lead to spatially inhomogeneous and anisotropic impedance-matched magneto-dielectric material distributions for, e.g., free-space invisibility cloaks. Recently, simplified anisotropic non-magnetic free-space cloaks made of a locally uniaxial dielectric material (calcite) have been realized experimentally. In a two-dimensional setting and for in-plane polarized light propagating in this plane, the cloaking performance can still be perfect for light rays. However, for general views in three dimensions, various imperfections are expected. In this paper, we study two different purely dielectric uniaxial cylindrical free-space cloaks. For one, the optic axis is along the radial direction, for the other one it is along the azimuthal direction. The azimuthal uniaxial cloak has not been suggested previously to the best of our knowledge. We visualize the cloaking performance of both by calculating photorealistic images rendered by ray tracing. Following and complementing our previous ray-tracing work, we use an equation of motion directly derived from Fermats principle. The rendered images generally exhibit significant imperfections. This includes the obvious fact that cloaking does not work at all for horizontal or for ordinary linear polarization of light. Moreover, more subtle effects occur such as viewing-angle-dependent aberrations. However, we still find amazingly good cloaking performance for the purely dielectric azimuthal uniaxial cloak.Comment: 12 pages, 3 figures, journal pape

    Probing the anomalous dynamical phase in long-range quantum spin chains through Fisher-zero lines

    Full text link
    Using the framework of infinite Matrix Product States, the existence of an \textit{anomalous} dynamical phase for the transverse-field Ising chain with sufficiently long-range interactions was first reported in [J.~C.~Halimeh and V.~Zauner-Stauber, arXiv:1610:02019], where it was shown that \textit{anomalous} cusps arise in the Loschmidt-echo return rate for sufficiently small quenches within the ferromagnetic phase. In this work we further probe the nature of the anomalous phase through calculating the corresponding Fisher-zero lines in the complex time plane. We find that these Fisher-zero lines exhibit a qualitative difference in their behavior, where, unlike in the case of the regular phase, some of them terminate before intersecting the imaginary axis, indicating the existence of smooth peaks in the return rate preceding the cusps. Additionally, we discuss in detail the infinite Matrix Product State time-evolution method used to calculate Fisher zeros and the Loschmidt-echo return rate using the Matrix Product State transfer matrix. Our work sheds further light on the nature of the anomalous phase in the long-range transverse-field Ising chain, while the numerical treatment presented can be applied to more general quantum spin chains.Comment: Journal article. 9 pages and 6 figures. Includes in part what used to be supplemental material in arXiv:1610:0201

    Concurrence of dynamical phase transitions at finite temperature in the fully connected transverse-field Ising model

    Full text link
    We construct the finite-temperature dynamical phase diagram of the fully connected transverse-field Ising model from the vantage point of two disparate concepts of dynamical criticality. An analytical derivation of the classical dynamics and exact diagonalization simulations are used to study the dynamics after a quantum quench in the system prepared in a thermal equilibrium state. The different dynamical phases characterized by the type of non-analyticities that emerge in an appropriately defined Loschmidt-echo return rate directly correspond to the dynamical phases determined by the spontaneous breaking of Z2\mathbb{Z}_2 symmetry in the long-time steady state. The dynamical phase diagram is qualitatively different depending on whether the initial thermal state is ferromagnetic or paramagnetic. Whereas the former leads to a dynamical phase diagram that can be directly related to its equilibrium counterpart, the latter gives rise to a divergent dynamical critical temperature at vanishing final transverse-field strength.Comment: journal article, 15 pages, 12 figures. Final versio

    Conformal carpet and grating cloaks

    Full text link
    We introduce a class of conformal versions of the previously introduced quasi-conformal carpet cloak, and show how to construct such conformal cloaks for different cloak shapes. Our method provides exact refractive-index profiles in closed mathematical form for the usual carpet cloak as well as for other shapes. By analyzing their asymptotic behavior, we find that the performance of finite-size cloaks becomes much better for metal shapes with zero average value, e.g., for gratings.Comment: added Ref. 12; added 2 figures; reformatte

    Unconventional critical exponents at dynamical quantum phase transitions in a random Ising chain

    Get PDF
    Dynamical quantum phase transitions (DQPTs) feature singular temporal behavior in transient quantum states during nonequilibrium real-time evolution. In this work we show that DQPTs in random Ising chains exhibit critical behavior with nontrivial exponents that are not integer valued and not of mean-field type. By means of an exact renormalization group transformation we estimate the exponents with high accuracy eliminating largely any finite-size effects. We further discuss how the considered dynamical phenomena can be made accessible in current Rydberg atom platforms. In this context we explore signatures of the DQPTs in the statistics of spin configuration measurements available in such architectures. Specifically, we study the statistics of clusters of consecutively aligned spins and observe a marked influence of the DQPT on the corresponding distribution.Comment: Accepted version, 9 pages, 3 figures, journal articl
    • …
    corecore