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Abstract: The design rules of transformation optics generally lead to 
spatially inhomogeneous and anisotropic impedance-matched magneto-
dielectric material distributions for, e.g., free-space invisibility cloaks. 
Recently, simplified anisotropic non-magnetic free-space cloaks made of a 
locally uniaxial dielectric material (calcite) have been realized 
experimentally. In a two-dimensional setting and for in-plane polarized 
light propagating in this plane, the cloaking performance can still be perfect 
for light rays. However, for general views in three dimensions, various 
imperfections are expected. In this paper, we study two different purely 
dielectric uniaxial cylindrical free-space cloaks. For one, the optic axis is 
along the radial direction, for the other one it is along the azimuthal 
direction. The azimuthal uniaxial cloak has not been suggested previously 
to the best of our knowledge. We visualize the cloaking performance of 
both by calculating photorealistic images rendered by ray tracing. 
Following and complementing our previous ray-tracing work, we use an 
equation of motion directly derived from Fermat’s principle. The rendered 
images generally exhibit significant imperfections. This includes the 
obvious fact that cloaking does not work at all for horizontal or for ordinary 
linear polarization of light. Moreover, more subtle effects occur such as 
viewing-angle-dependent aberrations. However, we still find amazingly 
good cloaking performance for the purely dielectric azimuthal uniaxial 
cloak. 
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1. Introduction 

Transformation optics maps the geometry of a fictitious space onto actual material properties 
in the laboratory [1–3]. Invisibility cloaking continues to be a fascinating benchmark example 
to test these ideas. Generally, spatially inhomogeneous and anisotropic magneto-dielectric 
material distributions result. Equal magnetic and dielectric responses are required at the same 
time to have (i) anisotropic light propagation yet no polarization dependence of the optical 
response and (ii) no reflections from interfaces via matching of the relative optical 
impedance, which is given by the square root of the ratio of the magnetic permeability μ  and 

the electric permittivity  . Obtaining an effective magnetic response at optical frequencies 
has become possible via three-dimensional metamaterials [4], but is necessarily connected 
with resonances. Hence, for passive structures, dispersion and finite losses via causality and 
the Kramers-Kronig relations are unavoidable and often unacceptable, especially in the 
context of macroscopic cloaking [5]. 

Recent experiments [6] on macroscopic broadband visible-frequency free-space 
invisibility cloaks made of standard uniaxial calcite have used purely dielectric anisotropic 
materials (calcite), i.e., the magnetic permeability is set to unity everywhere. This means that 
the response becomes polarization dependent and not impedance-matched. 

It is clear that completely neglecting the magnetic response and using uniaxial instead of 
biaxial materials are rather drastic ad hoc approximations. Apart from severely easing the 
experimental realization, these approximations are motivated by the fact that the behavior 
remains ideal for propagation of light in a two-dimensional plane and for linear polarization 
of light lying in that same plane. In this paper, we visualize the aberrations that occur as a 
result of these approximations for both polarizations of light and for more general viewing 
conditions in three dimensions by ray tracing. Early work on ray tracing in transformation 
media has been published in Refs [7]. and [8]. We investigate the paradigmatic free-space 
cylindrical invisibility cloak [9] with a continuously varying material distribution of a 
uniaxial electric permittivity tensor and unity magnetic permeability as an example. This 
example enables direct comparison with our previous work [10] on corresponding ideal 
impedance-matched magneto-dielectric cylindrical cloaks. In Sect. 2, we again use ray 
equations of motion for the ordinary and the extraordinary rays derived directly from 
Fermat’s principle [11–13]. 

At the interfaces of the structure, double refraction occurs. While the mathematical 
treatment may be seen as “straightforward”, we do summarize the general formulas in Sect. 3 
in compact form. In the literature, usually only special cases are explicitly discussed [14–17]. 
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Sect. 4 presents rendered images on the basis of Sect. 2 and 3. In Sect. 5 we explain the 
reason behind the significant difference in cloaking performance between the two variants of 
the uniaxial dielectric cylindrical cloak. 

2. Ray equation of motion in non-magnetic locally uniaxial material distributions 

In the geometrical optics of birefringent uniaxial dielectric materials, one has to distinguish 
between the paths of the ordinary and the extraordinary rays [14,15]. What polarization of 
light is ordinary and what is extraordinary will generally change at the interface between two 
different birefringent materials. However, if the change of the anisotropy axis c


 is 

continuous in space, the ordinary ray stays ordinary and the extraordinary ray stays 
extraordinary throughout even though the c


 axis changes. Only two different rays emerge 

from the overall structure (apart from further reflected contributions). We will restrict 
ourselves to this conceptually transparent case. Only at the interfaces of air/vacuum to the 
continuously changing medium, caution has to be exerted. The corresponding discussion will 
be given in the next section. 

Inside of the structure, we can choose the local Cartesian coordinate system such that, 
e.g., the local z-axis coincides with the local c


 axis. In this basis, the local dielectric tensor 

becomes 

 
o

o

e

0 0

0 0 .

0 0

 
 =  
 
 




 


 (1) 

Here we have suppressed the dependence on r


 for better readability and we will continue 
doing so throughout this section. As usual, the index “o” stands for ordinary and “e” for 
extraordinary here and below. In addition, we assume no magnetic response at all, i.e., we 

have the magnetic-permeability tensor 1.μ =


 The ordinary and extraordinary refractive 

indices are then given by o on =   and e en =  . 

Let us start by discussing the propagation of the ordinary ray, for which the polarization of 

light, i.e., the orientation of electric-field vector oE


, is perpendicular to the local c


 axis 

everywhere in the cloak. As a result, this ordinary ray merely experiences a simple refractive-
index distribution equivalent to a ray in a locally isotropic yet spatially inhomogeneous 
medium ( = “graded-index” structure). In Eq. (11) in Ref. 13 we have derived the 
corresponding ray equation of motion for the ordinary-ray velocity or energy velocity ov


 as 

 ( )2

o o o o oo

o

 2 .  d
.

d

v n n v vv

t n

∇ − ∇
=

   
 (2) 

It should be emphasized, however, that the ordinary rays do not lead to cloaking for the 
cylindrical cloak to be discussed in Sect. 4. 

Thus, the orthogonally polarized extraordinary rays are more important under our 
conditions. Their ray equation of motion is more involved though. We can closely follow the 
spirit of the derivation in Sect. 3 of Ref. 10, but we need to replace the expression 

e 0 e 0 e  B H Hμ μ μ= =
     (with vacuum permeability 0μ ) there by an appropriate expression to 

again arrive at a compact form like Eq. (7) in Ref. 10. Under the present conditions, the 

extraordinary magnetic field vector eB


 is perpendicular to the local c


 axis everywhere in the 

cloak. Thus, its direction is invariant under multiplication with 
  (and, therefore, also  1− ), 

just like the ordinary displacement vector oD


, which is also perpendicular to c


. With Eq. 

(1), this allows us to write 
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Inserting Eq. (3) into the extraordinary ray velocity ev


 (see Eq. (4) in Ref. 10) gives 

 ( ) ( ) 1  12
e ee e e e o

e
e 0 e 0 0 e

      1
,

D BE H E B n
v

w w wμ μ

− −×× ×
= = =
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  


 (4) 

with vacuum permittivity 0  ( o≠  ), and the electromagnetic energy density ew . Using the 

mathematical identity [10] 

 ( ) ( ) ( )1    ,A a A b A A a b−× = ×
     

 (5) 

where …  denotes the matrix determinant, we can connect the extraordinary ray velocity to 

the extraordinary wave vector of light ek


 via 

 1
e e

0 0 

1
  ,v M k

μ ω
−=



 (6) 

with the angular frequency of light ω  and the dimensionless auxiliary matrix 

 1 2 2  1
o e 2

o

1
   .M n n

n
− −= =

       (7) 

In the last step in Eq. (7) we have inserted the determinant 4 2
o e  n n=  (see Eq. (1)). Note that 

all quantities in Eq. (7) are generally still dependent on the coordinate vector r


. Inserting Eq. 
(6) and Eq. (7) into Fermat’s principle [10] and working out the Euler-Lagrange equations 
[10] leads us to the final extraordinary ray equation of motion (see Eq. (11) in Ref. 10) in 
compact form analogous to Newton’s second law [10] 

 ( ) ( )( )
1

e
e e e e

d
 2  .  .

d 2

v M
v M v M v v

t

−
 = ∇ − ∇ 

         (8) 

Obviously, this ray equation of motion is of the same form as that derived for impedance-

matched anisotropic magneto-dielectrics Eq. (11) in Ref. 10, but the auxiliary matrix M


 for 
non-magnetic uniaxial dielectrics in Eq. (7) is generally different from Eq. (8) in Ref. 10. 

3. Interface of the structure to air/vacuum 

Arbitrarily polarized incident light impinging from the outside of the cloak (i.e., from vacuum 
or air) will be double refracted at the cloak’s interface into an ordinary and an extraordinary 
ray, which will then propagate inside the cloak. Thus, we first need to determine the 
amplitudes and directions of these two rays before being able to apply the results of the 
previous section. 

In the following, the general case is considered where the optic axis c


 is not necessarily 
in the plane of incidence, which is the case in the azimuthal uniaxial cloak discussed in the 
next section. Two planes are defined: the ordinary main section, formed by the optic axis and 
the ordinary refracted wave vector, and the extraordinary main section, formed by the optic 
axis and the extraordinary refracted wave vector. The ordinary wave has its polarization 
vector orthogonal to the ordinary main section, while the extraordinary wave has its 
polarization vector in the extraordinary main section. The ordinary wave thus sees a refractive 
index equal to on  whereas the refractive index n  that the extraordinary wave sees is given 

by [15] 
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where e  φ is the angle the extraordinary polarization vector includes with the unit optic axis 

c


. If eϕ  is the angle of refraction of the extraordinary wave, one determines that 

 
 

e e earcsin sin( ) cos( ). ,c t c nφ ϕ ϕ
    

= −    .  
    

    (10) 

where 

n


 is the unit normal vector and t


 is the unit tangential vector in the plane of 
incidence (one can see that in the case of the radial uniaxial dielectric cloak, where the optic 
axis is parallel to the unit normal, we have, e.g., e e/ 2φ π ϕ= − ). As such, e( )n n ϕ=  can now 

be expressed as a function of eϕ , which enters into the equation of phase matching 

 ( ) ( ) ( )i i o o e esin sin  sin( ),n n nϕ ϕ ϕ ϕ= =  (11) 

where in  = 1 is the refractive index of air/vacuum, iϕ  is the angle of incidence, and oϕ  is the 

angle of ordinary refraction. From Eq. (11), it is straightforward to calculate oϕ . To 

determine eϕ , one must solve the implicit Eq. (11) from which two solutions emerge, with 

only one of them acceptable being in [0, / 2]π . As such, the directions of the refracted waves 

are determined. The amplitudes of the wave vectors are proportional to their respective 
refractive indices due to the condition of phase matching, and therefore the ordinary wave 
vector will carry a magnitude o o 0/k n cω=  (with the vacuum speed of light 0 )c  and that of 

the extraordinary wave a magnitude of ( )e e 0/k n cϕ ω= . 

Note that the above procedure allows determining the directions of all fields since the 
directions of the wave vectors are now known and so are the geometric conditions for their 
fields. For example, taking into account the extraordinary wave, it is known that its 

polarization eD


 must lie in the extraordinary main section. Moreover, a consequence of 

Maxwell’s equations is that eD


 is perpendicular to ek


, which exactly determines its direction 

within that plane. Moreover, another consequence of Maxwell's equations is that e eH D⊥
 

, 

and, as the medium is non-magnetic, this means that e eB D⊥
 

. Since eB


 is also 

perpendicular to ek


 due to Maxwell’s equations, eB


 is then perpendicular to the 

extraordinary main section, thus exactly determining its direction. With the directions of all 
fields determined, the boundary conditions of continuity [14] then allow us to determine their 
exact magnitudes. The ray-velocity vector can then be determined as per Eq. (4) or Eq. (6). 
The intensity transmission coefficients oT  and eT  for the ordinary and extraordinary refracted 

rays, respectively, are given by [16] 

 







o o e e

o e

i i i i

. (   )  . (   )
  and   ,

. (   )  . (   )

n E H n E H
T T

n E H n E H

× ×
= =

× ×
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    
 (12) 

where the index “i” stands for the incident quantity. 
Although mathematically similar, it is worth briefly mentioning that in the case of an 

interface from a uniaxial dielectric crystal to air/vacuum, there will in general be double 
reflections within the crystal, into an ordinary reflected wave and an extraordinary reflected 
wave, irrespective of whether the incident wave is itself ordinary or extraordinary. The 

#176877 - $15.00 USD Received 26 Sep 2012; accepted 18 Oct 2012; published 6 Dec 2012
(C) 2012 OSA 17 December 2012 / Vol. 20,  No. 27 / OPTICS EXPRESS  28334



directions and amplitudes of all relevant fields are determined just as in the case of the 
air/vacuum-cloak interface, except here there are two reflections (in cloak) and one refraction 
(into air), instead of one reflection (in air) and two refractions (in cloak) at the interface. 
Moreover, here it is the reflected wave vectors (ordinary and extraordinary) that, along with 
the optic axis, define the main sections. 

The intensity reflection coefficients are unity minus the transmission coefficient. 

4. Numerical results 

In cylindrical coordinates, the ideal magneto-dielectric parameters for the cylindrical cloak 
[9] with inner radius a  and outer radius b  are given by [9] 

 
2

;  ; .r r z z

r a r b r a

r r a b a r
μ μ μΘ Θ

− − = = = = = =  − − 
    (13) 

(Unfortunately, Eq. (12) in Ref. 10 contained a typo.) As discussed in the introduction, we 
wish to eliminate the magnetic response, i.e., we want to use the reduced magnetic parameters 

' ' ' 1r zμ μ μΘ= = = . At the same time, we want to keep the cloaking performance exact – at 

least for light propagating in the rΘ -plane with an electric-field vector lying in that plane 
(hence a magnetic-field vector along z ). To achieve this goal, the refractive-index 
distribution for the reduced parameters has to be the same as for the ideal parameters Eq. (13), 
i.e., the conditions ' ' r z r zμ μ=   and ' '

z zμ μΘ Θ=   need to be fulfilled. The same spirit has 

previously been followed in Ref. 18. Otherwise, the propagation time of light would be 
different with and without cloak (compare Ref. 10) and the structure may be a ray cloak but 
just cannot be a wave cloak [10]. For example, the 3D free-space structure realized in Ref. 6 
is a ray cloak but not a wave cloak, while the 3D carpet cloak in Ref. 19 has been shown to 
work for light waves and rays. For light propagating in the rΘ -plane with polarization in that 

plane, the reduced '
z  component does not enter at all. Thus, it is not yet determined. This 

leaves us with two non-equivalent choices. 
We can choose the axial component to be identical to the azimuthal component. With Eq. 

(13), this leads us to the reduced dielectric parameters 

 
2 2 2 2

' ' ' ; ; .  r z

r a b b b

r b a b a b aΘ
−       = = =       − − −       

    (14) 

We shall call the cloak according to Eq. (14) the radial uniaxial cloak as its optic axis is 
obviously along the radial direction. The other choice is the azimuthal uniaxial cloak, for 
which we get 

 
2 2 2 2 2

' ' ' .;  ; r z

r a b b r a b

r b a b a r b aΘ
− −         = = =         − − −         

    (15) 

To allow for direct comparison with our previous results on the ideal cylindrical cloak 
[10], we use the exact same scenery (see Fig. 3 in Ref. 10) and the identical parameters as in 
Ref. 10, i.e., 5 cma =  and 10 cmb = . Rendered ray-tracing images as well as time-of-flight 
(TOF) difference images for the ideal cylindrical cloak have been shown in Fig. 4 in Ref. 10. 

In the numerical implementation, we account for first-order reflections but omit multiple-
order reflections. This is justified because even the first-order reflected components (except 
for those from the inner metal cylinder) turn out to be barely visible in the rendered images. 

We start with unpolarized light rays emitted from the sources. Sect. 3 has given closed 
exact expressions for treating double refraction at the entrance interface from air/vacuum with 

1μ= =  to the cloak. We then solve Eq. (2) for the ordinary ray and Eq. (8) for the 

extraordinary ray inside of the cloak numerically using a standard fourth-order Runge-Kutta 
approach. Regarding reflection of light at the inner metal cylinder inside of the cloak, one 
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must generally be careful because of possible bi-reflections within birefringent media [16]. 
However, for the radial uniaxial cloak with Eq. (14), the local c


 axis (i.e., the radial 

direction) coincides with the metal surface normal and, thus, we get only a single reflected 
ray, the reflection angle of which simply equals the incidence angle for the ordinary as well as 
for the extraordinary ray. For the case of the radial uniaxial cloak below, all ordinary rays 
reach the inner metal cylinder while no extraordinary rays do. For the azimuthal uniaxial 
cloak, the rays turn out to never reach the inner metal cylinder for our conditions. Finally, 
refraction at the exit interface towards air/vacuum is again treated analytically according to 
Sect. 3. 

For the radial uniaxial cloak according to Eq. (14), the ordinary refractive index is 
constant within the cloak ( o 2n =  for the chosen parameters). Thus, the right-hand side of Eq. 

(2) is zero everywhere inside of the cloak. This means that ordinary rays propagate along 
straight lines within the cloak. The ordinary rays are, however, refracted at the cloak 
interfaces like for an ordinary cylindrical lens. The right-hand side of Eq. (2) is nonzero for 
the azimuthal uniaxial cloak according to Eq. (15), i.e., ordinary rays are curved within the 
cloak. 

Let us mention in passing that we have also modified and programmed the Hamiltonian 
ray tracing as in Ref. 7 for the present conditions. Situations for which perfect cloaking is 
expected have been used as test examples. To obtain the same relative accuracy of, e.g., 810−  
with the Runge-Kutta method, the Hamiltonian approach needed more than one order of 
magnitude longer computation times than ours. 

Rendered images for the non-magnetic, radial uniaxial dielectric, cylindrical cloak 
according to Eq. (14) are depicted in Fig. 1. Panel (a) shows the reference image without 
cylinder, (b) with metal cylinder of radius a , and (c) with metal cylinder and with cloak 
around it – all for unpolarized light. Clearly, (c) is the admixture of two rather different 
images for the two orthogonal linear polarizations. In panel (d), the virtual observer wears 
polarization goggles transmitting only vertical polarization and only horizontal polarization in 
(e). Note, however, that the polarization basis of the goggles is generally different from the 
polarization basis of an incoming ray. Hence, both panels (d) and (e) are admixtures of 
ordinary and extraordinary rays emerging from the cloak. 

For a normal observer, it is fair to say that the device simply does not work as an 
invisibility cloak (see Fig. 1(c)). In contrast, for selecting only vertical linear polarization in 
the image, the amplitude image in Fig. 1(d) exhibits quite reasonable cloaking in the center of 
the image and along the vertical direction. The cloaking performance deteriorates when 
departing from these cases, e.g., by rotating the observation axis around the center of the 
image, where we observe an adverse rotational effect on the cloaking quality. Recall that the 
horizontal field-of-view (FOV) in Fig. 1 is 50° (see Fig. 3 in Ref. 10), emulating a human 
focal FOV. For horizontal polarization, the “cloak” exactly acts like an isotropic dielectric 
around a reflective metal cylinder and, hence, represents a bad cylindrical lens with a curved 
reflector inside (see Fig. 1(e)). As to be expected from the design, “cloaking” is so bad for 
horizontal polarization that it deserves no further discussion. 

Due to the design of the cloak described above, the time-of-flight (TOF) images [10] for 
vertical analyzer orientation, in the center of the image and along the vertical direction, and 
for the case of cloak and cylinder are expected to be perfectly identical to the case of no 
cylinder (not depicted). 

The cloaking performance of the radial uniaxial dielectric cloak according to Eq. (14) is 
very good in the center of the image along the vertical direction in Fig. 1(d). However, as 
soon as one rotates the observation axis, huge distortions occur. Thus, the overall 
performance of this cloak, the design of which closely follows Ref. 18, is quite disappointing 
in three dimensions and even in two dimensions away from the center vertical plane. 
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Figure 2 shows the same scenario and the same cases as in Fig. 1, but for the azimuthal 
uniaxial dielectric cloak according to Eq. (15). To the best of our knowledge, this design has 
not been discussed before. Again, as expected by the design, horizontal orientation of the 
polarization goggles in Fig. 2(e) is so bad that it deserves no further discussion. In sharp 
contrast, the performance is rather good for vertical polarization in Fig. 2(d). This is expected 
from the cloak design as described above for the middle of the image along the vertical 
direction. The good performance is much less obvious for other viewing directions and could 
only be revealed by our rendering. An intuitive explanation as to why the azimuthal uniaxial 
cloak performs so much better than the radial one will be given in the next section. 

In a hypothetical TOF experiment [10] using a short pulse incident onto the scenery, one 
would, however, observe satellites in addition to the main transmitted pulse, by which the 
cloak could likely be revealed. 

 

Fig. 1. Photorealistic images for the non-magnetic radial uniaxial dielectric cloak according to 
Eq. (14) rendered by ray tracing using Eq. (2) and Eq. (8). The scenery and the input raw 
images are defined in Fig. 3 in Ref. 10. (a) Reference image without metal cylinder, (b) with 
metal cylinder in front of the model’s head but without cloak, (c) with metal cylinder and with 
radial uniaxial dielectric cloak and for unpolarized light, (d) as (c) but for vertical orientation 
of the linear polarizer in front of the virtual camera, and (e) as (c) but for horizontal 
polarization. 
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Fig. 2. As Fig. 1, but for the non-magnetic azimuthal uniaxial dielectric cloak according to Eq. 
(15) rather than the radial uniaxial cloak according to Eq. (14). Comparison of panels (d) of 
Fig. 1 and Fig. 2 shows a far superior performance of the azimuthal uniaxial dielectric cloak 
compared to the radial uniaxial dielectric cloak. In panels (d), the linear polarizer in front of 
the virtual camera is vertically orientated. This different cloaking performance is explained in 
Sect. 5 and illustrated in Fig. 3. 

5. Intuitive explanation 

The rendered images of the preceding section have shown that the azimuthal uniaxial purely 
dielectric cloak performs much better than its radial counterpart. Here, we aim at providing an 
intuitive explanation for this difference. 

In Fig. 3, we consider for each of the two cloaks two incident wave vectors, namely vk


 in 

the vertical plane and hk


 in the horizontal plane, both of which can be assumed to emanate 
from, e.g., the viewing camera, and examine what happens only to their extraordinary 

refracted wave vectors v
ek


 and h
ek


, respectively. Noting that the polarization vector of the 

refracted extraordinary wave vector must lie in the extraordinary main section, we see that for 

both cloaks the extraordinary polarization vector v
eD


 is indeed in the vertical plane when the 

incident wave vector is along vk


, and thus the cloaking should be perfect in this case since 

#176877 - $15.00 USD Received 26 Sep 2012; accepted 18 Oct 2012; published 6 Dec 2012
(C) 2012 OSA 17 December 2012 / Vol. 20,  No. 27 / OPTICS EXPRESS  28338



the cloaks are designed to cloak perfectly for light rays that, along with their polarization 
vectors, lie parallel to the vertical plane. 

However, if the incident wave vector is parallel to hk


, the situation is drastically 
different. In the case of the radial uniaxial cloak, where the optic axis is parallel to the surface 
normal, we see that the extraordinary main section is identical to the horizontal plane itself in 
this case, which is also the plane of incidence. This means that the extraordinary polarization 

vector h
eD


 lies completely in the horizontal plane, and thus the cloaking is expected to be 

significantly deteriorated in this case. One can envisage that, as the observation axis is rotated 
around the center of the image, incident rays onto the cloak will partially refract into 
extraordinary rays that will behave in a manner that is in between these two extremes. This 
leads to what we term the rotational effect present in the cloaking behavior of the radial 
uniaxial cloak. In contrast, in the case of the azimuthal uniaxial cloak, the rotational effect is 

completely absent. Here, h
eD


 will be parallel to the vertical plane since the optic axis here is 

perpendicular to the horizontal plane leading the extraordinary main section to be 

perpendicular to the plane of incidence (horizontal plane). As such, hk


 will experience a 
refractive-index distribution which is much more favorable for cloaking. The only reason the 
cloaking is imperfect here (albeit still considerably better than in the case of the radial 

uniaxial cloak) is due to the fact that hk


 itself is not parallel to the vertical plane. 

6. Conclusion 

We have derived Newton’s-law-like ray equations of motion for non-magnetic continuously 
varying anisotropic locally uniaxial dielectric material distributions directly from Fermat’s 
principle. This complements our previous corresponding work on graded-index locally 
isotropic dielectrics [13] and on locally anisotropic impedance-matched magneto-dielectric 
material distributions [10] – both of which show no birefringence. 

We have used this approach to render photorealistic images of cylindrical free-space 
invisibility cloaks made of locally anisotropic non-magnetic dielectrics, using home-built, 
dedicated ray-tracing software. Two cases have been discussed: the radial and the azimuthal 
uniaxial cloaks. The radial uniaxial cloak performs rather badly overall – even for its design 
polarization. 

In sharp contrast, the purely dielectric azimuthal uniaxial cloak, which has not been 
suggested previously, exhibits surprisingly good cloaking in three dimensions for one linear 
polarization of light. In particular, the performance goes well beyond that of recent 
impressive experiments [6] in that it leads to the correct time-of-flight (“wave cloak”), at least 
in the center of the image, whereas the piece-wise homogeneous calcite polygonal structure in 
Ref. 6 is expected to exhibit huge time-of-flight differences compared to empty space and is 
hence only a “ray cloak”. Moreover, in contrast to Ref. 6, our cloak and the resulting 
performance are rotationally invariant, i.e., the performance does not depend on the viewing 
direction. The price to pay in our case is that two components of the local permittivity tensor 
assume positive values below one, i.e., we need superluminal light propagation. 

It is often believed that such values of the permittivity tensor components 0 1ij≤ ≤  are 

only possible in a narrow frequency interval (e.g., at frequencies above the resonance 
frequency of a pronounced resonance) and that causality demands that they are accompanied 
by serious losses. Both aspects have to be treated with extreme caution. Recent experiments 
on metamaterials composed of active non-Foster elements operating at MHz and GHz 
frequencies [20,21] have shown rather constant superluminal electromagnetic phase and 
group velocities from 2 MHz to 40 MHz frequency [21] (more than four octaves bandwidth). 
The frequency dependence occurring at yet higher frequencies guarantees the fundamental 
consistency with causality and with the laws of special relativity [20,21]. 
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Fig. 3. Illustration explaining the different cloaking behavior found in Fig. 1 and Fig. 2. (a) 
Radial uniaxial cylindrical cloak and (b) azimuthal uniaxial cylindrical cloak. Extraordinary 
light in the vertical plane carries an extraordinary polarization vector that is parallel to the 
vertical plane in both cases, thus providing perfect cloaking as expected. However, for 
extraordinary light in the horizontal plane, the extraordinary polarization vector lies in the 
horizontal plane in the case of the radial uniaxial cloak, leading to bad cloaking quality. In 
contrast, for the case of the azimuthal uniaxial cloak, the extraordinary polarization is still 
parallel to the vertical plane, which generally leads to good cloaking behavior. 
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