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Unconventional critical exponents at dynamical quantum phase transitions in a random Ising chain
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Dynamical quantum phase transitions (DQPTs) feature singular temporal behavior in transient quantum states
during nonequilibrium real-time evolution. In this work we show that DQPTs in random Ising chains exhibit
critical behavior with nontrivial exponents that are not integer valued and not of mean-field type. By means of
an exact renormalization group transformation we estimate the exponents with high accuracy eliminating largely
any finite-size effects. We further discuss how the considered dynamical phenomena can be made accessible in
current Rydberg atom platforms. In this context we explore signatures of the DQPTs in the statistics of spin
configuration measurements available in such architectures. Specifically, we study the statistics of clusters of
consecutively aligned spins and observe a marked influence of the DQPT on the corresponding distribution.

DOI: 10.1103/PhysRevB.104.115159

I. INTRODUCTION

The advances in quantum simulators over the last decade
have provided experimental access to the real-time dynamics
of quantum matter at an unprecedented level of control. This
has led to the observation of many-body localization [1–3],
time crystals [4–7], the quantum Kibble-Zurek mechanism
[8–13], dynamics in gauge theories [14–18], prethermal-
ization [19–22], and various concepts of dynamical phase
transitions [23–28]. A fundamental property of the quantum
states generated through a nonequilibrium process is that they
cannot be captured with a conventional thermodynamic de-
scription. As a consequence, elementary equilibrium concepts
such as phases and phase transitions require a generalization
to the dynamical realm.

In this context, dynamical quantum phase transitions
(DQPTs) have been introduced as an attempt to lift the notion
of phase transitions and criticality to the dynamical regime
[29–33]. As opposed to conventional transitions, which are
driven by external control parameters, these DQPTs are sig-
naled by singular behavior as a function of time and are
therefore occurring due to drastic internal changes as a sys-
tem evolves temporally. In some cases it has been rigorously
shown that such DQPTs can follow the equilibrium paradigm
of continuous phase transitions [34–44]. However, the found
associated critical exponents have typically been integer val-
ued or of mean-field type [45–47]. Thus, it has remained as a
central open question whether some generic quantum mod-
els exist exhibiting DQPTs with critical behavior featuring
nontrivial exponents belonging to more exotic universality
classes.

It is the central goal of this work to show that DQPTs
in random one-dimensional Ising chains with bond disorder
show critical behavior associated with a nontrivial exponent.
Using an exact real-space renormalization group treatment,
we find that the dynamical analog λ(t ) of a free energy density

follows a temporal scaling form λ(t ) ∼ |(t − tc)/tc|α close
to a DQPT at time tc with α = 0.1264(2). We argue that
the considered real-time scenario is accessible with current
experiments in Rydberg atoms trapped in optical tweezers
[48–52], where the random couplings in the Ising chain can
be created by a suitable random spatial arrangement of the
atoms in real space. In this context we further explore whether
signatures of the DQPTs in experimentally accessible quan-
tities other than λ(t ) can be observed. A particular feature
of these experiments is that single shots of a measurement
yield spin configurations of all the individual Rydberg atoms,
whose statistics we study via the occurrence of clusters with
M consecutive aligned spins. We find that the associated
probability distribution function p(M, t ) exhibits a distinct
temporal signature of DQPTs.

It is a key challenge in the field of nonequilibrium real-
time dynamics of quantum matter to characterize transient
quantum states, as they cannot be described in terms of en-
sembles, as is the case in equilibrium or for many steady states
appearing in the asymptotic long-time limit. In this context,
the theory of DQPTs has been introduced [29,53] as a concept
to provide a general framework for the identification of dy-
namical phases and their mutual transitions even without the
possibility of an ensemble description. The central quantity
within this theory is the Loschmidt amplitude

L(t ) = 〈ψ0|e−iHt |ψ0〉, (1)

which is nothing but the overlap between the initial state |ψ0〉
before and its time-evolved version |ψ (t )〉 = exp(−iHt )|ψ0〉
after the quench. On a formal level, L(t ) assumes the form
of a complex partition function. As a natural consequence, it
is natural to introduce an effective free energy density (also
termed rate function):

λ(t ) = − 1

N
ln[|L(t )|2]. (2)
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In close analogy to equilibrium, where phase transitions are
associated with singular behavior in free energies, a DQPT
occurs whenever λ(t ) becomes nonanalytic. Here, however,
this nonanalytic behavior happens as a function of time and
therefore as a consequence of drastic internal changes during
the dynamics and not as a function of an external control
parameter, as is the case for equilibrium transitions. In the
meantime it has been explored extensively to which extent
properties of conventional phase transitions can be general-
ized to DQPTs [30]. It is of particular importance that DQPTs
can follow the equilibrium paradigm of continuous phase
transitions involving scaling and universality. Concretely, this
has been shown for one-dimensional Ising chains using ex-
act renormalization group transformations where the exact
fixed points and their critical behavior have been identified
[34]. While for many models a close analogy between the
equilibrium phase diagrams and DQPTs have been observed
[54,55], also exceptions have been found such as in the case
of long-range Ising models [56,57], where the corresponding
DQPTs have been termed anomalous. Importantly, DQPTs
have not only remained a theoretical framework, but they have
also become of significant experimental interest. DQPTs have
been observed in a trapped ion experiment [23], where the
dynamics of the transverse Ising model were simulated and it
was possible to measure the rate function λ(t ) [23]. Further,
DQPTs have been explored in systems of ultracold atoms [24],
quantum walks [58,59], nitrogen-vacancy centers in diamond
[27,60], topological nanomechanical systems [61], and super-
conducting qubits [62].

This paper is organized as follows. In Sec. II we intro-
duce the main model we use for our analysis. In Sec. III we
compute the Loschmidt echo in terms of the complex Ising
partition function, and then numerically extract the critical
exponent associated with the nonanalytic cusps arising in the
Loschmidt return rate. In Sec. IV we present an experimen-
tally inspired scheme in order to detect signatures of DQPTs
based on projective measurements of spin configurations.
Also in the spirit of experimental relevance, we add in Sec. V
a weak random longitudinal field in our model to investigate
the effect of possible noise on our results. We finally conclude
and propose future investigations in Sec. VI.

II. MODEL AND QUENCH

In this work we consider the one-dimensional quan-
tum nearest-neighbor Ising model with uniformly distributed
random site-dependent spin-spin coupling given by the
Hamiltonian

H = −
∑
n=1

Jnσ
z
nσ z

n+1 − hz

N∑
n=1

σ z
n − hx

N∑
n=1

σ x
n . (3)

There are three parameters appearing in the Hamiltonian (3):
Jn is the random spin-spin coupling assuming its value from
a probability density function uniformly distributed between
−0.5 and 0.5. hz and hx are the longitudinal- and transverse-
field strengths, which take on a constant value. σ x

n , σ z
n are the

Pauli matrices acting on the lattice site n ∈ {1, . . . , N}, with
N the total number of sites in the chain. Periodic boundary
conditions are considered in the following.

The system for t < 0 is prepared in the ground state of the
Hamiltonian (3) at vanishing longitudinal field hz and spin-
spin coupling Jn for each n. This leads to the ground state

|ψ0〉 = |ψ (t = 0)〉 = | →1 · · · →N 〉. (4)

The quench in the system is performed at t = 0 when the
transverse field hx is switched off while the longitudinal one
(hz) and the spin-spin coupling Jn are switched on.

III. DYNAMICAL QUANTUM PHASE TRANSITIONS

The particular quench introduced in Sec. II has already
been studied in the past [63] and it was observed that close
to the critical time of the emerging DQPT, the rate function
could be consistent with a power-law behavior of the kind
|λ(t ) − λ(tc)| ∼ |t − tc|α . One of the main goals of this work
is to numerically provide an accurate estimate of the critical
exponent α. We achieve this because, for the quench consid-
ered, the Loschmidt amplitude can be written as a complex
partition function of the classical random Ising chain [34,40].

A. Complex Ising partition function

To see this, consider the initial state (4), which can be
written as an equally weighted superposition of eigenstates
of the z basis: |ψ0〉 = 2−N/2 ∑

sz |sz〉, where |sz〉 is of the
form |s1, . . . , sN 〉, with sn =↑,↓. As a consequence, replacing
this expression of the initial state into the definition of the
Loschmidt amplitude, and noticing that the final Hamiltonian
is diagonal in the z basis, all the interference terms vanish
[〈(sz )′|H |sz〉 = 0 if |sz〉 
= |(sz )′〉] and thus only the diagonal
elements remain. Therefore, the Loschmidt amplitude can be
recast into the complex partition function

L(t ) = 1

2N
Tr e−iHt . (5)

In the uniform limit of such a problem, transfer matrix tech-
niques allow for an exact solution of the free energy in the
thermodynamic limit N → ∞ [64,65]. A few changes have to
be taken into account at the level of the transfer matrix when
computing the Loschmidt amplitude since we are dealing
with a time-evolved state [66] and a random site-dependent
parameter in the Hamiltonian. The final result yields

L(t ) = 1

2N
Tr(K1 . . . KN ), (6)

where Kn is the transfer matrix describing the interactions
between two neighboring sites. In order to obtain Eq. (6), we
define

K (σn, σn+1) = eiJntσnσn+1+ it
2 (hnσn+hn+1σn+1 ), (7)

where, for the sake of notational brevity, we have omitted the z
superscript in the associated Pauli matrices. Accordingly, the
final expression of L(t ) in Eq. (5) can be written as

L(t ) = 1

2N

∑
σ1=±1

. . .
∑

σN =±1

K (σ1, σ2)K (σ2, σ3) × . . .

× K (σN−1, σN )K (σN , σ1). (8)
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FIG. 1. (a) Effective free energy λ as a function of time for
system size N = 220, obtained with hz = 0.25. (b) Effective free
energy λ as a function of �t = t − tc in the vicinity of the critical
time tc = 4π . The results are shown for three different system sizes:
N = 214, 216, 218. At the critical time tc, λ exhibits a nonanalytical
pattern. (c) ln[�λ] as a function of ln[�t], where �λ = λ(t ) − λ(tc ).
The resulting plot looks like a straight line, suggesting a power-law
relation between �λ and �t . (d) Logarithmic derivative of λ. It
assumes an almost constant value which is the slope of the line in
panel (c) and the value of the critical exponent α. The red line is
the best fit of the form d ln |�λ|/d ln |�t | = a + b|�t |c of the points
obtained for N = 218.

Considering K (σn, σn+1) as entries of the 2 × 2 matrix Kn (see
Appendix) and introducing two states σ+ and σ− defined as

σ+ =
(

1
0

)
, σ− =

(
0
1

)
, (9)

it turns out that one can write

L(t ) = 1

2N

∑
α1=±

(σ α1 )ᵀK1K2 . . . KNσ α1 = 1

2N
Tr

N∏
n=1

Kn. (10)

B. Critical exponent

In our quench protocol, we can reach very large sys-
tem sizes in performing a spatial decimation renormalization
group (RG) on the Loschmidt amplitude through merging
together two consecutive lattice sites. The result can still be
described with a transfer matrix of the same form of the initial
problem, but with different parameters. After the iteration of
N − 1 RG steps, it turns out that the Loschmidt amplitude is
given by the product of N − 1 scalars multiplied by the trace
of a 2 × 2 matrix. More details are provided in the Appendix.
Exploiting this technique, we can reach very large system
sizes (N ∼ 220), immensely reducing finite-size effects which
in general severely undermine the estimation of critical expo-
nents. The results presented in Fig. 1 have been obtained using
hz = 0.25 and averaging over 3000 random realizations. We
have checked that the same conclusions hold also for other
values of the longitudinal field hz. In Fig. 1(a) we show the
effective free energy λ(t ) as a function of time. In the plot
one can see the two times: 4π and 8π , when λ(t ) exhibits
sharp features—clear consequences of the underlying DQPT

of the quench considered. In Fig. 1(b), we zoom into the
vicinity of the critical time observed in panel (a), where on
the x axis we consider now the distance to the critical time:
�t = t − tc. We show the result for three different system
sizes: N = 214, 216, 218. In order to understand how the ef-
fective free energy scales in the vicinity of the critical time,
we focus on Fig. 1(c) where we show ln |�λ| vs ln |�t |, with
�λ = λ(t ) − λ(tc). The almost-straight line observed sug-
gests a polynomial relation |λ(t ) − λ(tc)| ∼ |t − tc|α , where
α is the critical exponent. Although any system close to the
critical point is subjected to severe fluctuations which affect
the estimation of the critical exponent, in our case we achieve
a good accuracy because of the large system size considered.
In order to very accurately estimate the value of α, we look
at the logarithmic derivative of λ(t ). The result is shown in
Fig. 1(d), where we see that α is not yet constant on the whole
considered time interval. Nevertheless, upon restricting the
range of �t around the critical time, very good convergence
is achieved toward a value of

α = 0.1264(2). (11)

The error here is calculated as the standard deviation of the
distance of the points in Fig. 1(d) for N = 218 from their
best fit with a + b|�t |c. This functional form follows directly
from scaling behavior expected at critical points, where |�λ|
assumes the structure |�t |A + g|�t |B + · · · , with real positive
coefficients B > A, and g a real constant. Thus, for small �t ,
it can be shown that

d ln |�λ|
d ln |�t | = |�t |d ln |�λ|

d|�t |

≈ |�t |d ln
(|�t |A + g|�t |B)

d|�t |

= A + (B − A)g|�t |B−A

1 + g|�t |B−A

∼ A + (
B − A

)
g|�t |B−A. (12)

At very small |�t | (i.e., very close to the critical point),
this behavior shows a visible deviation from our data, which
we attribute to both finite-size corrections and the inherent
imprecision in determining the exact value of the critical
point. The dependency of α on �t is evident when trying
to get the critical exponent as the slope of the best linear
fitting procedure on the data for N = 218 in Fig. 1(c). The
result yields α = 0.13258(7), which can be considered as an
average of the value of the critical exponent in the whole
�t range considered. As expected from Fig. 1(c), this value
is affected by the dependency of α on �t and it is slightly
higher than the asymptotic result α = 0.1264(2) for �t → 0.
Since the critical exponent is obtained in the limit of �t → 0,
in experiments one should measure the value α = 0.1264. In
fact, this is the numerical result inferred from Fig. 1(d) in
the limit �t → 0. The other result presented in this paper,
α = 0.13258(7), shows that the numerical value of the critical
exponent may depend on the time interval �t considered.

It is worth noting here that Ref. [63] finds a different value
of α ∼ 0.2. The main objective in that work was to show
analytically and numerically that disordered models can still
exhibit DQPTs, and the maximal number of sites used there
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FIG. 2. θ (M, t ) = − 1
N ln[|p(M, t )|] as a function of time and of

cluster size M. Around tc, and for large values of M, the underlying
DQPT affects θ (M, t ), which starts to assume relatively large num-
bers. This is a consequence of the fact that θ (M, t ) tends to λ in the
limit of M ∼ N and the effective free energy λ shows a cusp at tc.

was only N = 45 000, much smaller than what we use here
(N = 218). Moreover, the fit used in Ref. [63] was a crude
one, as is clear from Fig. 3 of that paper. In our present work,
extracting the critical exponent was the main objective, and we
accordingly directed our numerical efforts toward achieving
that. It is this reason why the exponent here is much more
accurate than that in Ref. [63].

IV. CLUSTER SIZE

Having shown that quantum quenches in random Ising
chains support DQPTs with unconventional exponents, we
now aim to explore signatures of these unconventional DQPTs
in other physical observables.

Here, we orient along recent advances in experimental
quantum simulation platforms such as in systems of Rydberg
atoms [50–52], where the nonequilibrium dynamics of ran-
dom Ising models as in Eq. (3) can be potentially realized [67],
as we will discuss in more detail in our concluding discussion
in Sec. VI. Naturally, these architectures provide access to the

FIG. 3. (a) Effective free energy λ(t ) in the vicinity of the crit-
ical time tc for different values of the longitudinal field h: h =
0, 0.01, 0.04, 0.07, 0.1. The system size considered is N = 210. In
the limit h = 0 the cusp is clearly visible, while increasing the value
of h, the pattern becomes more and more smooth. (b) �λ as a func-
tion of �t , rescaled by hb and hc, respectively, for different values of
h, where �λ = λ(t ) − λ(tc ) and �t = t − tc. The curves for different
h collapse onto each other when the exponents are b = −0.475 and
c = −1.02.

system properties through projective measurements of spin
configurations in a given orientation on the Bloch sphere of
each of the qubits. Here, we will consider the case where
the projection is along the x-spin direction of each individual
atom. After multiple measurements such experiments provide
naturally access to the statistics of spin configurations, e.g., for
our time-evolved state |ψ (t )〉. Importantly, this also includes,
in principle, the Loschmidt echo itself, as it is nothing but
the probability to find at time t the quantum state |ψ (t )〉
in the spin configuration |ψ0〉 = | →1 · · · →N 〉; see Eq. (4).
Measuring |L(t )|2, i.e., the probability that the measurement
outcome is a single cluster of → pointing spins, is only fea-
sible for quantum systems with a limited number of degrees
of freedom N , as L(t ) = exp[−Nλ(t )] is exponentially sup-
pressed. Smaller clusters of → pointing spins can be identified
with fewer experimental resources. In the following, we are
thus interested in theoretically characterizing the statistics of
such clusters and to provide a link to the underlying DQPTs
in our setup.

To be specific, a cluster of size M refers to a spatial region
with M consecutive spins aligned in the positive x direction,
while the two spins at the edges of this string are pointing
along the negative x direction, e.g., ←1,

∏M+1
n=2 →n,←M+2.

For this reason we introduce the on-site projectors

p̂→
n = | →n〉〈→n |, (13)

p̂←
n = | ←n〉〈←n |, (14)

onto the states | →n〉 and | ←n〉, respectively. The probability
of finding a cluster of size M at an evolution time t in the chain
is

p(M, t ) = 〈ψ (t )|P̂x
M |ψ (t )〉, (15)

where

P̂x
M := | ←N 〉〈←N |P̂→

M | ←M+1〉〈←M+1 |
= p̂←

N P̂→
M p̂←

M+1, (16)

with

P̂→
M :=

M∏
n=1

p̂→
n . (17)

We consider now N = 27 and we compute

θ (M, t ) = − 1

N
ln[p(M, t )], (18)

in the vicinity of the critical time. The result is shown in Fig. 2,
where we see that the underlying DQPT exhibits a marked
influence on the probability distribution function p(M, t ). In
particular, a clear pattern arises for large values of M.

In fact, when M approaches N , we notice that θ (M, t ) →
λ(t ). This fact can be understood by noticing that for M ∼ N ,
the contributions of the two projectors p̂←

N and p̂←
M+1 become

less and less relevant and, therefore, θ (M, t ) approaches the
effective free energy λ(t ). This asymptotic equality holds
since the Loschmidt echo, given by |L(t )|2, can be written
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in terms of the projector in Eq. (17), with M = N :

|L(t )|2 = |〈ψ0|e−iHt |ψ0〉|2 = 〈ψ (t )|ψ0〉〈ψ0|ψ (t )〉

= 〈ψ (t )|
N∏

n=1

p̂→
n |ψ (t )〉 = 〈ψ (t )|P̂→

N |ψ (t )〉. (19)

Consequently, θ (M, t ) must reproduce the nonanalytical pat-
tern for t = tc which is a mark of the DQPT and well visible
in the color plot. Importantly, the nonanalytic structure at
M = N controls θ (M, t ) in a large region for M < N .

V. ADDING A PERTURBATIVE RANDOM
LONGITUDINAL FIELD

Up to now we have studied the dynamics of the ran-
dom Ising chain for homogeneous longitudinal fields. In the
following we will now investigate the influence of a weak
inhomogeneity, which is also a particular experimental rele-
vance because imperfections can likely induce such random
fields such as for Rydberg atoms; see Sec. VI for a more
detailed discussion. We therefore now study DQPTs for the
extended Hamiltonian

Hp = H −
N∑

n=1

hR
z (n)σ z

n , (20)

where the site-dependent random longitudinal field hR
z (n),

with n = 1, . . . , N , is independently drawn from a uni-
form probability distribution centered around 0: hR

z (n) ∈
[−h/2, h/2] with h setting the disorder strength.

We consider the same quench protocol used in Sec. III.
Using the same methodology introduced in Sec. IV, we de-
termine the effective free energy λ(t ). We show the results in
Fig. 3(a) in the vicinity of the critical time for N = 210 aver-
aged over around 3000 random realizations. While for h = 0
we see the same DQPT as studied before, this singular feature
is smoothed out with increasing h. This is consistent with
recent renormalization group considerations, suggesting that
the random longitudinal field is a relevant perturbation [40]
meaning that its presence causes the system to be attracted
to a different fixed point. From an alternative perspective,
however, the instability of the underlying fixed point implies
universality and scaling, even in the presence of this relevant
perturbation, which one can make use of. In this context, the
value of h characterizes the distance from the critical point.
Consequently we expect to observe some scaling collapse
of the curves for different values of h in the vicinity of the
critical time upon appropriately rescaling both the distance
�t = t − tc to the critical time as well as the distance �λ =
λ(t ) − λ(tc) from the singularity in the effective free energy,
by hb and hc, respectively. This analysis is shown in Fig. 3(b),
where the values of the exponents b and c are chosen in such a
way to achieve a data collapse for different h. It turns out that
the exponents are

b = −0.475,

c = −1.02. (21)

Our analysis provides encouraging hopes for a successful
experimental realization of such a quench protocol. In fact,

although the random longitudinal field smears out the nonan-
alytical pattern of the effective free energy at the critical time,
the underlying DQPT at h = 0 still manifests in the scaling
properties of λ(t ).

VI. CONCLUDING DISCUSSION

In this work we have investigated DQPTs in random Ising
models. Using an exact large-scale renormalization group
transformation we have identified with high accuracy the ex-
ponent of the DQPT. As opposed to previously studied cases,
where typically integers of mean-field type exponents have
been found [30,45–47], we observe in the present model that
the exponent is nontrivial.

As already anticipated, the considered nonequilibrium sce-
nario appears feasible within current platforms of Rydberg
atoms trapped in optical tweezers. In particular, these systems
allow us to approximately realize the desired target Hamilto-
nian in Eq. (3). The Rydberg interaction generates an effective
interaction V = ∑

n 
=m VNN |rn − rm|−6(σ z
n + 1)(σ z

m + 1) be-
tween the spin degrees of freedom. Upon tuning the positions
rn of the Rydberg atoms using the optical tweezers, it is
possible to realize effective random and inhomogeneous in-
teraction potentials Jn = VNN/|rn − rn+1|6 [67]. In principle,
also longer-ranged couplings are present due to the alge-
braic dependence of the interaction potential. However, due
to the large exponent in the respective power law, further
distant couplings are strongly suppressed and can be neglected
on the timescales considered in our nonequilibrium setup.
Importantly, the specific form of the Rydberg interactions
implies that an inhomogeneous spatial configuration of atoms
also leads to inhomogeneous magnetic field contributions
hn = VNN (|rn−1 − rn|−6 + |rn − rn+1|−6). While it might be
possible in the future to compensate for these random longitu-
dinal fields with additional locally applied fields, in the short
term their presence appears unavoidable and consequently
our analysis in Sec. V directly relevant. Furthermore, Ryd-
berg atoms allow the projective measurements considered for
the characterization of cluster sizes in Sec. IV, so that the
presented results appear experimentally accessible in current
experiments.

For the future, it would be an interesting aspect to use the
introduced methodology to study critical exponents in other
models such as the one-dimensional Potts model with random
couplings, which in the homogeneous case has already been
investigated using similar techniques [36]. A further interest-
ing route might be to study two-dimensional Ising models,
where the Loschmidt amplitude can still be identified with a
complex classical partition function [34]. Such a mapping is
still possible for random couplings, where solutions for the
classical problem are known [68,69] and might be extended
to the nonequilibrium dynamical context.
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APPENDIX: LARGE N FOR THE RATE FUNCTION λ(t )

1. Transfer matrix

Here, we shall explain in detail how we compute the rate
function λ(t ) for large system sizes. As mentioned in the main
part of the paper, the initial state we are considering is the one
described in Eq. (4), while the Hamiltonian is given in Eq. (3),
with hx = 0. Since this Hamiltonian is diagonal in the z basis,
we are able to write the Loschmidt amplitude in the form of
Eq. (8). The associated terms K (σn, σn+1) form elements of
the 2 × 2 matrix

Kn = Cn

(
x−1

n y−1
n xnz−1

n

xnzn x−1
n yn

)
, (A1)

with xn = e−itJn , yn = e
−it
2 (hn+hn+1 ), and zn = e

−it
2 (hn−hn+1 ). The

factor Cn is equal to unity in this case, but its inclusion
here is useful, because when performing spatial RG transfor-
mations on the Loschmidt amplitude, its value will change
upon application of the RG steps. We notice that in the
uniform limit Jn = J, hn = h, ∀n ∈ {1, . . . , N}, the transfer
matrix (A1) yields the well-known result for the partition
function of the uniform Ising model.

Using the definition of the vectors σ+(−) given in Eq. (9),
we obtain the following identities:

K (1, 1) = (σ+)ᵀKσ+, (A2)

K (1, 2) = (σ+)ᵀKσ−, (A3)

K (2, 1) = (σ−)ᵀKσ+, (A4)

K (2, 2) = (σ−)ᵀKσ−. (A5)

Taking these equalities into account, we can rewrite the
Loschmidt amplitude of Eq. (8) as

L(t ) = 1

2N

∑
α1=±

. . .
∑

αN =±
(σ α1 )ᵀK1σ

α2 (σ α2 )ᵀK2σ
α3×

. . . × (σ αN−1 )ᵀKN−1σ
αN (σ αN )ᵀKNσ α1

= 1

2N

∑
α1=±

(σ α1 )ᵀK1

∑
α2=±

σ α2 (σ α2 )ᵀK2σ
α3×

. . . × (σ αN−1 )ᵀKN−1

∑
αN =±

σ αN (σ αN )ᵀKNσ α1

= 1

2N

∑
α1=±

(σ α1 )ᵀK1K2 . . . KNσ α1

= 1

2N
Tr(K1 . . . KN ) = 1

2N
Tr

N∏
n=1

Kn, (A6)

where we have used the completeness relation of the states
σ+(−).

2. Spatial RG

We now perform a spatial RG transformation merging to-
gether two consequent lattice sites. For the Ising model, the
transfer matrix (A1) keeps the same form after performing
one RG step. Subsequently, we multiply consequent transfer
matrices, KnKn+1, and enforce that the result has the same
form of the transfer matrix K , which is now a function of new
couplings Ĵ, ĥ. The equality will set the new couplings Ĵ, ĥ
(and consequently x̂, ŷ, and ẑ) in terms of the initial parameters
J, h. This recipe is known as the RG flow equations of the
problem.

Explicitly, we have to compute the equation KnKn+1 =
Kn,n+1:

CnCn+1

(
x−1

n y−1
n xnz−1

n

xnzn x−1
n yn

)(
x−1

n+1y−1
n+1 xn+1z−1

n+1

xn+1zn+1 x−1
n+1yn+1

)

= Ĉm

(
x̂−1

m ŷ−1
m x̂m ẑ−1

m

x̂m ẑm x̂−1
m ŷm

)
. (A7)

The matrix multiplication in Eq. (A7) leads to the following
four equations:

Ĉm

ŷmx̂m
= (

[xnynxn+1yn+1]−1 + ynz−1
n yn+1zn+1

)
CnCn+1, (A8)

Ĉmŷm ẑm = (
ynzny−1

n+1x−1
n+1 + xny−1

n yn+1zn+1
)
CnCn+1, (A9)

Ĉmŷm

ẑm
= (

y−1
n x−1

n yn+1z−1
n+1 + ynz−1

n y−1
n+1xn+1

)
CnCn+1, (A10)

Ĉmx̂m

ŷm
= (

ynznyn+1z−1
n+1 + y−1

n xny−1
n+1xn+1

)
CnCn+1. (A11)

Dividing Eq. (A11) by Eq. (A8), we get

x̂2
m = ynznyn+1z−1

n+1 + y−1
n xny−1

n+1xn+1

[xnynxn+1yn+1]−1 + ynz−1
n yn+1zn+1

. (A12)

Similarly, dividing Eq. (A9) by Eq. (A10) yields

ẑ2
m = ynzny−1

n+1x−1
n+1 + xny−1

n yn+1zn+1

y−1
n x−1

n yn+1z−1
n+1 + ynz−1

n y−1
n+1xn+1

, (A13)

and dividing Eq. (A10) by Eq. (A8) leads to

ŷ2
m = y−1

n x−1
n yn+1z−1

n+1 + ynz−1
n y−1

n+1xn+1

[xnynxn+1yn+1]−1 + ynz−1
n yn+1zn+1

ẑm

x̂m
. (A14)

From Eq. (A9) we compute

Ĉm = (
ynzny−1

n+1x−1
n+1 + xny−1

n yn+1zn+1
)CnCn+1

ŷm ẑm
. (A15)

We here make a brief comment on the subscript m of the
new couplings appearing in the left-hand side of Eqs. (A12)–
(A15). At the beginning the chain has N sites. After one RG
step, the number of effective sites is halved and consequently
also the number of new couplings Ô, where the operator O
in the previous step can be equal to C, x, y, z. We have for
example Ô1 = O1O2, Ô2 = O3O4, ..., ÔN/2 = ON−1ON . More
generally Ôm = OnOn+1 with 2m = n + 1.

The RG analysis presented above turns out to be very
useful to compute the Loschmidt amplitude numerically for
large system sizes. Indeed, Eq. (A6) states that the Loschmidt
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amplitude is given by the product of N matrices. On the
other hand, after one RG step the Loschmidt amplitude can
be written as a product of N/2 matrices:

L(t ) = 1

2N
Tr

N/2∏
n=1

K̂nĈn. (A16)

Performing another RG step we obtain

L(t ) = 1

2N

N/2∏
n=1

ĈnTr
N/4∏
m=1

ˆ̂Km
ˆ̂Cm. (A17)

Let us suppose that N = 2M , with M ∈ N. Consequently, after
M − 1 RG steps the effective chain has only one site and the

Loschmidt amplitude is given by a product of N − 1 scalars
multiplied by the trace of a single 2 × 2 matrix:

L(t ) = 1

2N

N/2∏
n=1

CRG1
n

N/4∏
m=1

CRG2
m

N/8∏
p=1

CRG3
p . . .

×
2∏

1=1

CRGM−2
q CRGM−1 Tr(KRGM−1 )

= 1

2N
Tr(KRGM−1 )

N−1∏
n=1

CRG
n , (A18)

where CRGr
n is the coefficient associated with the nth site after

r RG steps.
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[67] M. Marcuzzi, J. Minář, D. Barredo, S. de Léséleuc, H. Labuhn,

T. Lahaye, A. Browaeys, E. Levi, and I. Lesanovsky, Phys. Rev.
Lett. 118, 063606 (2017).

[68] G. Forgács, W. F. Wolff, and A. Süt, Phys. Rev. B 31, 6089
(1985).

[69] R. Shankar and G. Murthy, Phys. Rev. B 35, 3671(R) (1987).

115159-8

https://doi.org/10.1088/1361-6455/aabcdf
https://doi.org/10.1103/PhysRevLett.115.140602
https://doi.org/10.1103/PhysRevB.87.195104
https://doi.org/10.1103/PhysRevB.95.075143
https://doi.org/10.1103/PhysRevB.96.104436
https://doi.org/10.1103/PhysRevB.97.174401
https://doi.org/10.1103/PhysRevLett.121.130603
https://doi.org/10.1103/PhysRevB.97.174303
https://doi.org/10.1103/PhysRevLett.120.130601
https://doi.org/10.1103/PhysRevResearch.2.033111
http://arxiv.org/abs/arXiv:1811.09275
https://doi.org/10.1103/PhysRevB.102.035115
http://arxiv.org/abs/arXiv:1908.04476
https://doi.org/10.1103/PhysRevB.101.064427
https://doi.org/10.1103/PhysRevB.101.014305
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1038/nature18274
https://doi.org/10.1103/PhysRevLett.120.180502
https://doi.org/10.1103/PhysRevLett.114.113002
https://doi.org/10.1103/PhysRevLett.113.205701
https://doi.org/10.1103/PhysRevB.93.085416
https://doi.org/10.1103/PhysRevB.96.125113
https://doi.org/10.1103/PhysRevB.96.134427
https://doi.org/10.1103/PhysRevE.96.062118
https://doi.org/10.1038/s41377-019-0237-8
https://doi.org/10.1103/PhysRevLett.122.020501
https://doi.org/10.1103/PhysRevA.100.052328
https://doi.org/10.1103/PhysRevB.100.024310
https://doi.org/10.1103/PhysRevApplied.11.044080
http://arxiv.org/abs/arXiv:1903.03109
https://doi.org/10.1103/PhysRevB.89.125120
https://doi.org/10.1103/PhysRevLett.118.063606
https://doi.org/10.1103/PhysRevB.31.6089
https://doi.org/10.1103/PhysRevB.35.3671

