212 research outputs found

    Концепції мовної гри як теоретичні засади організації навчально-ігрової діяльності

    Get PDF
    У статті розглянуто лінгвофілософські й лінгвістичні концепції мовної гри як підґрунтя організації навчально-ігрової діяльності в системі українськомовної освіти. На основі наукового осмислення окреслено зміст понять "гра", "навчально-ігрова діяльність", "мовна гра". Шляхом аналізу наукової літератури й синтезу теоретичних ідей визначено принципи побудови й реалізації навчально-методичної системи, спрямованої на формування мовної особистості школяра в навчально-ігровій діяльності

    Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology

    Full text link
    For optimal processing and design of entangled polymeric materials it is important to establish a rigorous link between the detailed molecular composition of the polymer and the viscoelastic properties of the macroscopic melt. We review current and past computer simulation techniques and critically assess their ability to provide such a link between chemistry and rheology. We distinguish between two classes of coarse-graining levels, which we term coarse-grained molecular dynamics (CGMD) and coarse-grained stochastic dynamics (CGSD). In CGMD the coarse-grained beads are still relatively hard, thus automatically preventing bond crossing. This also implies an upper limit on the number of atoms that can be lumped together and therefore on the longest chain lengths that can be studied. To reach a higher degree of coarse-graining, in CGSD many more atoms are lumped together, leading to relatively soft beads. In that case friction and stochastic forces dominate the interactions, and actions must be undertaken to prevent bond crossing. We also review alternative methods that make use of the tube model of polymer dynamics, by obtaining the entanglement characteristics through a primitive path analysis and by simulation of a primitive chain network. We finally review super-coarse-grained methods in which an entire polymer is represented by a single particle, and comment on ways to include memory effects and transient forces.Comment: Topical review, 31 pages, 10 figure

    Statistical Properties of Contact Maps

    Full text link
    A contact map is a simple representation of the structure of proteins and other chain-like macromolecules. This representation is quite amenable to numerical studies of folding. We show that the number of contact maps corresponding to the possible configurations of a polypeptide chain of N amino acids, represented by (N-1)-step self avoiding walks on a lattice, grows exponentially with N for all dimensions D>1. We carry out exact enumerations in D=2 on the square and triangular lattices for walks of up to 20 steps and investigate various statistical properties of contact maps corresponding to such walks. We also study the exact statistics of contact maps generated by walks on a ladder.Comment: Latex file, 15 pages, 12 eps figures. To appear on Phys. Rev.

    Predicting Important Residues and Interaction Pathways in Proteins Using Gaussian Network Model: Binding and Stability of HLA Proteins

    Get PDF
    A statistical thermodynamics approach is proposed to determine structurally and functionally important residues in native proteins that are involved in energy exchange with a ligand and other residues along an interaction pathway. The structure-function relationships, ligand binding and allosteric activities of ten structures of HLA Class I proteins of the immune system are studied by the Gaussian Network Model. Five of these models are associated with inflammatory rheumatic disease and the remaining five are properly functioning. In the Gaussian Network Model, the protein structures are modeled as an elastic network where the inter-residue interactions are harmonic. Important residues and the interaction pathways in the proteins are identified by focusing on the largest eigenvalue of the residue interaction matrix. Predicted important residues match those known from previous experimental and clinical work. Graph perturbation is used to determine the response of the important residues along the interaction pathway. Differences in response patterns of the two sets of proteins are identified and their relations to disease are discussed

    From Network Structure to Dynamics and Back Again: Relating dynamical stability and connection topology in biological complex systems

    Full text link
    The recent discovery of universal principles underlying many complex networks occurring across a wide range of length scales in the biological world has spurred physicists in trying to understand such features using techniques from statistical physics and non-linear dynamics. In this paper, we look at a few examples of biological networks to see how similar questions can come up in very different contexts. We review some of our recent work that looks at how network structure (e.g., its connection topology) can dictate the nature of its dynamics, and conversely, how dynamical considerations constrain the network structure. We also see how networks occurring in nature can evolve to modular configurations as a result of simultaneously trying to satisfy multiple structural and dynamical constraints. The resulting optimal networks possess hubs and have heterogeneous degree distribution similar to those seen in biological systems.Comment: 15 pages, 6 figures, to appear in Proceedings of "Dynamics On and Of Complex Networks", ECSS'07 Satellite Workshop, Dresden, Oct 1-5, 200

    A novel form of recessive limb girdle muscular dystrophy with mental retardation and abnormal expression of alpha-dystroglycan

    Get PDF
    Cataloged from PDF version of article.The limb girdle muscular dystrophies are a heterogeneous group of conditions characterized by proximal muscle weakness and disease onset ranging from infancy to adulthood. We report here eight patients from seven unrelated families affected by a novel and relatively mild form of autosomal recessive limb girdle muscular dystrophy (LGMD2) with onset in the first decade of life and characterized by severe mental retardation but normal brain imaging. Immunocytochemical studies revealed a significant selective reduction of α-dystroglycan expression in the muscle biopsies. Linkage analysis excluded known loci for both limb girdle muscular dystrophy and congenital muscular dystrophies in the consanguineous families. We consider that this represents a novel form of muscular dystrophy with associated brain involvement. The biochemical studies suggest that it may belong to the growing number of muscular dystrophies with abnormal expression of α-dystroglycan. © 2003 Published by Elsevier B.V

    Universal behavior of localization of residue fluctuations in globular proteins

    Full text link
    Localization properties of residue fluctuations in globular proteins are studied theoretically by using the Gaussian network model. Participation ratio for each residue fluctuation mode is calculated. It is found that the relationship between participation ratio and frequency is similar for all globular proteins, indicating a universal behavior in spite of their different size, shape, and architecture.Comment: 4 pages, 3 figures. To appear in Phys. Rev.

    GCK gene mutations are a common cause of childhood-onset MODY (maturity-onset diabetes of the young) in Turkey.

    Get PDF
    Inactivating heterozygous mutations in the GCK gene are a common cause of MODY and result in mild fasting hyperglycaemia, which does not require treatment. We aimed to identify the frequency, clinical and molecular features of GCK mutations in a Turkish paediatric cohort.This article is freely available via PubMed Central, click on the Additional Link above to access the full-text

    Bi-allelic mutations in MYL1 cause a severe congenital myopathy.

    Get PDF
    OBJECTIVE: Congenital myopathies are typically characterised by early onset hypotonia, weakness and hallmark features on biopsy. Despite the rapid pace of gene discovery, approximately 50% of patients with a congenital myopathy remain without a genetic diagnosis following screening of known disease genes. METHODS: We performed exome sequencing on two consanguineous probands diagnosed with a congenital myopathy and muscle biopsy showing selective atrophy/hypotrophy or absence of type II myofibres. RESULTS: We identified variants in the gene (MYL1) encoding the skeletal muscle fast-twitch specific myosin essential light chain in both probands. A homozygous essential splice acceptor variant (c.479-2A>G, predicted to result in skipping of exon 5 was identified in Proband 1, and a homozygous missense substitution (c.488T>G, p.(Met163Arg)) was identified in Proband 2. Protein modeling of the p.(Met163Arg) substitution predicted it might impede intermolecular interactions that facilitate binding to the IQ domain of myosin heavy chain, thus likely impacting on the structure and functioning of the myosin motor. MYL1 was markedly reduced in skeletal muscle from both probands, suggesting that the missense substitution likely results in an unstable protein. Knock down of myl1 in zebrafish resulted in abnormal morphology, disrupted muscle structure and impaired touch-evoked escape responses, thus confirming that skeletal muscle fast-twitch specific myosin essential light chain is critical for myofibre development and function. INTERPRETATION: Our data implicate MYL1 as a crucial protein for adequate skeletal muscle function and that MYL1 deficiency is associated with a severe congenital myopathy

    Specialized dynamical properties of promiscuous residues revealed by simulated conformational ensembles

    Get PDF
    The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein-protein interaction prediction and design methods. © 2013 American Chemical Society
    corecore