81 research outputs found

    Vibrational noise from wind energy-turbines negatively impacts earthworm abundance

    Get PDF
    Human activities often impact the sensory environment of organisms. Wind energy turbines are a fast-growing potential source of anthropogenic vibrational noise that can affect soil animals sensitive to vibrations and thereby alter soil community functioning. Larger soil animals, such as earthworms (macrofauna, &gt; 1 cm in size), are particularly likely to be impacted by the low-frequency turbine waves that can travel through soils over large distances. Here we examine the effect of wind turbine-induced vibrational noise on the abundance of soil animals. We measured vibrational noise generated by seven different turbines located in organically-farmed crop fields in the Netherlands. Vibratory noise levels dropped by an average of 23 ± 7 dB over a distance of 200 m away from the wind turbines. Earthworm abundance showed a strong decrease with increasing vibratory noise. When comparing the nearest sampling points in proximity of the wind energy turbines with the points furthest away, abundance dropped on average by 40% across all seven fields. The abundance of small-sized soil animals (mesofauna, &lt; 10 mm in size) differed between crop fields, but was not related to local noise levels. Our results suggest that anthropogenic vibratory noise levels can impact larger soil fauna, which has important consequences for soil functioning. Earthworms, for instance, are considered to be crucial ecosystem engineers and an impact on their abundance, survival and reproduction may have knock-on effects on important processes such as water filtration, nutrient cycling and carbon sequestration.</p

    Multisensory pollution: artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (Parus major)

    Get PDF
    Urbanisation is increasing globally at a rapid pace. Consequently, wild species face novel environmental stressors associated with urban sprawl, such as artificial light at night and noise. These stressors have pervasive effects on the behaviour and physiology of many species. Most studies have singled out the impact of just one of these stressors, while in the real world they are likely to co-occur both temporally and spatially, and we thus lack a clear understanding of the combined effect of anthropogenic stressors on wild species. Here, we experimentally exposed captive male great tits (Parus major) to artificial light at night and 24 h noise in a fully factorial experiment. We then measured the effect of both these stressors on their own and their combination on the amount and timing of activity patterns. We found that both light and noise affected activity patterns when presented alone, but in opposite ways: light increased activity, particularly at night, while noise reduced it, particularly during the day. When the two stressors were combined, we found a synergistic effect on the total activity and the nighttime activity, but an antagonistic effect on daytime activity. The significant interaction between noise and light treatment also differed among forest and city birds. Indeed, we detected a significant interactive effect on light and noise on daytime, nighttime, dusktime and offset of activity of urban birds, but not of forest birds. These results suggest that both artificial light at night and anthropogenic noise can drive changes in activity patterns, but that the specific impacts depend on the habitat of origin. Furthermore, our results demonstrate that co-occurring exposure to noise and light can lead to a stronger impact at night than predicted from the additive effects and thus that multisensory pollution may be a considerable threat for wildlife

    Toward Testing for Multimodal Perception of Mating Signals

    Get PDF
    Many mating signals consist of multimodal components that need decoding by several sensory modalities on the receiver's side. For methodological and conceptual reasons, the communicative functions of these signals are often investigated only one at a time. Likewise, variation of single signal traits are frequently correlated by researchers with senders' quality or receivers' behavioral responses. Consequently, the two classic and still dominating hypotheses regarding the communicative meaning of multimodal mating signals postulate that different components either serve as back-up messages or provide multiple meanings. Here we discuss how this conceptual dichotomy might have hampered a more integrative, perception encompassing understanding of multimodal communication: neither the multiple message nor the back-up signal hypotheses address the possibility that multimodal signals are integrated neurally into one percept. Therefore, when studying multimodal mating signals, we should be aware that they can give rise to multimodal percepts. This means that receivers can gain access to additional information inherent in combined signal components only (“the whole is something different than the sum of its parts”). We review the evidence for the importance of multimodal percepts and outline potential avenues for discovery of multimodal percepts in animal communication

    Adding colour-realistic video images to audio playbacks increases stimulus engagement but does not enhance vocal learning in zebra finches

    Get PDF
    Bird song and human speech are learned early in life and for both cases engagement with live social tutors generally leads to better learning outcomes than passive audio-only exposure. Real-world tutor–tutee relations are normally not uni- but multimodal and observations suggest that visual cues related to sound production might enhance vocal learning. We tested this hypothesis by pairing appropriate, colour-realistic, high frame-rate videos of a singing adult male zebra finch tutor with song playbacks and presenting these stimuli to juvenile zebra finches (Taeniopygia guttata). Juveniles exposed to song playbacks combined with video presentation of a singing bird approached the stimulus more often and spent more time close to it than juveniles exposed to audio playback only or audio playback combined with pixelated and time-reversed videos. However, higher engagement with the realistic audio–visual stimuli was not predictive of better song learning. Thus, although multimodality increased stimulus engagement and biologically relevant video content was more salient than colour and movement equivalent videos, the higher engagement with the realistic audio–visual stimuli did not lead to enhanced vocal learning. Whether the lack of three-dimensionality of a video tutor and/or the lack of meaningful social interaction make them less suitable for facilitating song learning than audio–visual exposure to a live tutor remains to be tested

    Adaptive changes in sexual signalling in response to urbanization

    Get PDF
    Urbanization can cause species to adjust their sexual displays, because the effectiveness of mating signals is influenced by environmental conditions. Despite many examples that show that mating signals in urban conditions differ from those in rural conditions, we do not know whether these differences provide a combined reproductive and survival benefit to the urban phenotype. Here we show that male tĂșngara frogs have increased the conspicuousness of their calls, which is under strong sexual and natural selection by signal receivers, as an adaptive response to city life. The urban phenotype consequently attracts more females than the forest phenotype, while avoiding the costs that are imposed by eavesdropping bats and midges, which we show are rare in urban areas. Finally, we show in a translocation experiment that urban frogs can reduce risk of predation and parasitism when moved to the forest, but that forest frogs do not increase their sexual attractiveness when moved to the city. Our findings thus reveal that urbanization can rapidly drive adaptive signal change via changes in both natural and sexual selection pressures

    Why conservation biology can benefit from sensory ecology

    Get PDF
    Global expansion of human activities is associated with the introduction of novel stimuli, such as anthropogenic noise, artificial lights and chemical agents. Progress in documenting the ecological effects of sensory pollutants is weakened by sparse knowledge of the mechanisms underlying these effects. This severely limits our capacity to devise mitigation measures. Here, we integrate knowledge of animal sensory ecology, physiology and life history to articulate three perceptual mechanisms—masking, distracting and misleading—that clearly explain how and why anthropogenic sensory pollutants impact organisms. We then link these three mechanisms to ecological consequences and discuss their implications for conservation. We argue that this framework can reveal the presence of ‘sensory danger zones’, hotspots of conservation concern where sensory pollutants overlap in space and time with an organism’s activity, and foster development of strategic interventions to mitigate the impact of sensory pollutants. Future research that applies this framework will provide critical insight to preserve the natural sensory world

    How Should We Study Urban Speciation?

    No full text

    The quiet spring of 2020

    No full text
    Sounds of the past can be easily forgotten, especially when soundscapes change gradually over long periods of time. This past spring, many people got a chance to experience how the outside world sounded in the 1950s. Global transport came to a halt as human activities decreased abruptly (either voluntarily or under direct order for lockdown) to stem the spread of coronavirus disease 2019 (COVID-19). With fewer people driving cars and hardly any airplanes traversing the skies, the amount of background noise across whole continents dropped substantially. On page 575 of this issue, Derryberry et al. (1) report the impact of the COVID-19 shutdown on animal behavior—namely, the songs of white-crowned sparrows. The findings suggest that mitigation measures against noise pollution could yield immediate beneficial effects on urban wildlife

    Spotted Dove 4

    No full text
    AnimaliaCraniataAvesColumbiformesColumbidaeStreptopeliaSound file provided in .mp3 delivery formatAudio tracks of animal soundsSong; elevation 400 meters; recorded at Liuyu, near Houma, Shanxi Province; Chin

    Behavioural Ecology: Noise Annoys at Community Level

    Get PDF
    SummaryA new study on the impact of anthropogenic noise on birds takes a behavioural discipline to the level of community ecology: noise can not only harm individual species but also alter species relationships
    • 

    corecore