295 research outputs found
Preparation of nondegenerate coherent superpositions in a three-state ladder system assisted by Stark Shifts
We propose a technique to prepare coherent superpositions of two
nondegenerate quantum states in a three-state ladder system, driven by two
simultaneous fields near resonance with an intermediate state. The technique,
of potential application to enhancement of nonlinear processes, uses adiabatic
passage assisted by dynamic Stark shifts induced by a third laser field. The
method offers significant advantages over alternative techniques: (\i) it does
not require laser pulses of specific shape and duration and (\ii) it requires
less intense fields than schemes based on two-photon excitation with
non-resonant intermediate states. We discuss possible experimental
implementation for enhancement of frequency conversion in mercury atoms.Comment: 22 pages, 8 figures, 1 table, submitted to PHys. Rev.
Photoionization Suppression by Continuum Coherence: Experiment and Theory
We present experimental and theoretical results of a detailed study of
laser-induced continuum structures (LICS) in the photoionization continuum of
helium out of the metastable state 2s . The continuum dressing with a
1064 nm laser, couples the same region of the continuum to the {4s }
state. The experimental data, presented for a range of intensities, show
pronounced ionization suppression (by as much as 70% with respect to the
far-from-resonance value) as well as enhancement, in a Beutler-Fano resonance
profile. This ionization suppression is a clear indication of population
trapping mediated by coupling to a contiuum. We present experimental results
demonstrating the effect of pulse delay upon the LICS, and for the behavior of
LICS for both weak and strong probe pulses. Simulations based upon numerical
solution of the Schr\"{o}dinger equation model the experimental results. The
atomic parameters (Rabi frequencies and Stark shifts) are calculated using a
simple model-potential method for the computation of the needed wavefunctions.
The simulations of the LICS profiles are in excellent agreement with
experiment. We also present an analytic formulation of pulsed LICS. We show
that in the case of a probe pulse shorter than the dressing one the LICS
profile is the convolution of the power spectra of the probe pulse with the
usual Fano profile of stationary LICS. We discuss some consequences of
deviation from steady-state theory.Comment: 29 pages, 17 figures, accepted to PR
Two-Photon Excitation of Low-Lying Electronic Quadrupole States in Atomic Clusters
A simple scheme of population and detection of low-lying electronic
quadrupole modes in free small deformed metal clusters is proposed. The scheme
is analyzed in terms of the TDLDA (time-dependent local density approximation)
calculations. As test case, the deformed cluster is considered.
Long-living quadrupole oscillations are generated via resonant two-photon
(two-dipole) excitation and then detected through the appearance of satellites
in the photoelectron spectra generated by a probe pulse. Femtosecond pump and
probe pulses with intensities and
pulse duration fs are found to be optimal. The modes of
interest are dominated by a single electron-hole pair and so their energies,
being combined with the photoelectron data for hole states, allow to gather new
information about mean-field spectra of valence electrons in the HOMO-LUMO
region. Besides, the scheme allows to estimate the lifetime of electron-hole
pairs and hence the relaxation time of electronic energy into ionic heat.Comment: 4 pages, 4 figure
Nasally delivered interferon-λ protects mice against infection by SARS-CoV-2 variants including Omicron
Although vaccines and monoclonal antibody countermeasures have reduced the morbidity and mortality associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, variants with constellations of mutations in the spike gene jeopardize their efficacy. Accordingly, antiviral interventions that are resistant to further virus evolution are needed. The host-derived cytokine interferon lambda (IFN-λ) has been proposed as a possible treatment based on studies in human coronavirus 2019 (COVID-19) patients. Here, we show that IFN-λ protects against SARS-CoV-2 B.1.351 (Beta) and B.1.1.529 (Omicron) variants in three strains of conventional and human ACE2 transgenic mice. Prophylaxis or therapy with nasally delivered IFN-λ2 limits infection of historical or variant SARS-CoV-2 strains in the upper and lower respiratory tracts without causing excessive inflammation. In the lung, IFN-λ is produced preferentially in epithelial cells and acts on radio-resistant cells to protect against SARS-CoV-2 infection. Thus, inhaled IFN-λ may have promise as a treatment for evolving SARS-CoV-2 variants that develop resistance to antibody-based countermeasures
Ultrabright and narrowband intra-fiber biphoton source at ultralow pump power
Nonclassical photon sources of high brightness are key components of quantum communication technologies. We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber. The brightness of our source approaches the limit of achievable generated spectral brightness at which successive photon pairs start to overlap in time. For a generated spectral brightness per pump power of up to 2 Ă 10âč pairs/(s MHz mW) we observe nonclassical correlations at pump powers below 100 nW and a narrow bandwidth of 2Ï Ă 6.5 MHz. In this regime we demonstrate that our source can be used as a heralded single-photon source. By further increasing the brightness we enter the regime where successive photon pairs start to overlap in time and the cross-correlation approaches a limit corresponding to thermal statistics. Our approach of combining the advantages of atomic ensembles and waveguide environments is an important step toward photonic quantum networks of ensemble-based elements
Principles for the definition of design structures
Different kinds of design structure are created and used in engineering design and development processes. Function structures, design grammars and bills of materials are common examples. However, there is a lack of clarity regarding distinctions and similarities between different kinds of structure and systematic ways to articulate them. This paper brings together research on product structuring and shape computation to inform the specification of principles for the definition of design structures. The principles draw together findings reported in the computational geometry and product definition literature with research from a range of companies and industry sectors that encompasses enterprise and process structures. The potential value of the principles to computer integrated manufacturing and through-life support is demonstrated through application to four case studies
Recommended from our members
Drawing a line in the sand: affect and testimony in autism assessment teams in the UK.
Diagnosis of autism in the UK is generally made within a multidisciplinary team setting and is primarily based on observation and clinical interview. We examined how clinicians diagnose autism in practice by observing post-assessment meetings in specialist autism teams. Eighteen meetings across four teams based in the south of England and covering 88 cases were audio-recorded, transcribed and analysed using thematic analysis. We drew out two themes, related to the way in which clinicians expressed their specialist disciplinary knowledge to come to diagnostic consensus: Feeling Autism in the Encounter; and Evaluating Testimonies of Non-present Actors. We show how clinicians produce objective accounts through their situated practices and perform diagnosis as an act of interpretation, affect and evaluation to meet the institutional demands of the diagnostic setting. Our study contributes to our understanding of how diagnosis is accomplished in practice.Wellcome Trust Investigator Awar
Novel modulators of p53-signaling encoded by unknown genes of emerging viruses
The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcomaassociated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs
- âŠ