7,204 research outputs found

    Microwave Power Transmission System Studies. Volume 1: Executive Summary

    Get PDF
    A study of microwave power generation, transmission, reception and control was conducted as a part of a program to demonstrate the feasibility of power transmission from geosynchronous orbit. A summary is presented of results concerning design approaches, estimated costs (ROM), critical technology, associated ground and orbital test programs with emphasis on dc to rf conversion, transmitting antenna, phase control, mechanical systems, flight operations, ground power receiving-rectifying antenna with systems analysis, and evaluation. Recommendations for early further in-depth studies complementing the technology program are included

    Microwave power transmission system studies. Volume 2: Introduction, organization, environmental and spaceborne systems analyses

    Get PDF
    Introduction, organization, analyses, conclusions, and recommendations for each of the spaceborne subsystems are presented. Environmental effects - propagation analyses are presented with appendices covering radio wave diffraction by random ionospheric irregularities, self-focusing plasma instabilities and ohmic heating of the D-region. Analyses of dc to rf conversion subsystems and system considerations for both the amplitron and the klystron are included with appendices for the klystron covering cavity circuit calculations, output power of the solenoid-focused klystron, thermal control system, and confined flow focusing of a relativistic beam. The photovoltaic power source characteristics are discussed as they apply to interfacing with the power distribution flow paths, magnetic field interaction, dc to rf converter protection, power distribution including estimates for the power budget, weights, and costs. Analyses for the transmitting antenna consider the aperture illumination and size, with associated efficiencies and ground power distributions. Analyses of subarray types and dimensions, attitude error, flatness, phase error, subarray layout, frequency tolerance, attenuation, waveguide dimensional tolerances, mechanical including thermal considerations are included. Implications associated with transportation, assembly and packaging, attitude control and alignment are discussed. The phase front control subsystem, including both ground based pilot signal driven adaptive and ground command approaches with their associated phase errors, are analyzed

    Micro-optical Tandem Luminescent Solar Concentrators

    Get PDF
    Traditional concentrating photovoltaic (CPV) systems utilize multijunction cells to minimize thermalization losses, but cannot efficiently capture diffuse sunlight, which contributes to a high levelized cost of energy (LCOE) and limits their use to geographical regions with high direct sunlight insolation. Luminescent solar concentrators (LSCs) harness light generated by luminophores embedded in a light-trapping waveguide to concentrate light onto smaller cells. LSCs can absorb both direct and diffuse sunlight, and thus can operate as flat plate receivers at a fixed tilt and with a conventional module form factor. However, current LSCs experience significant power loss through parasitic luminophore absorption and incomplete light trapping by the optical waveguide. Here we introduce a tandem LSC device architecture that overcomes both of these limitations, consisting of a PLMA polymer layer with embedded CdSe/CdS quantum dot (QD) luminophores and InGaP micro-cells, which serve as a high bandgap absorber on top of a conventional Si photovoltaic. We experimentally synthesize CdSe/CdS QDs with exceptionally high quantum-yield (99%) and ultra-narrowband emission optimally matched to fabricated III-V InGaP micro-cells. Using a Monte Carlo ray-tracing model, we show the radiative limit power conversion efficiency for a module with these components to be 30.8% diffuse sunlight conditions. These results indicate that a tandem LSC-on-Si architecture could significantly improve upon the efficiency of a conventional Si photovoltaic module with simple and straightforward alterations of the module lamination steps of a Si photovoltaic manufacturing process, with promise for widespread module deployment across diverse geographical regions and energy markets

    Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F(2) variance of growth and obesity in DU6i x DBA/2 mice

    Get PDF
    Genes influencing body weight and composition and serum concentrations of leptin, insulin, and insulin-like growth factor I (IGF-I) in nonfasting animals were mapped in an intercross of the extreme high-growth mouse line DU6i and the inbred line DBA/2. Significant loci with major effects (F > 7.07) for body weight, obesity, and muscle weight were found on chromosomes 1, 4, 5, 7, 11, 12, 13, and 17, for leptin on chromosome 14, for insulin on chromosome 4, and for IGF-I on chromosome 10 at the Igf1 gene locus itself and on chromosome 18. Significant interaction between different quantitative trait loci (QTL) positions was observed (P < 0.01). Evidence was found that loci having small direct effect on growth or obesity contribute to the obese phenotype by geneā€“gene interaction. The effects of QTLs, epistasis, and pleiotropy account for 64% and 63% of the phenotypic variance of body weight and fat accumulation and for over 32% of muscle weight and serum concentrations of leptin, and IGF-I in the F2 population of DU6i x DBA/2 mice. [The quantitative trait loci described in this paper have been submitted to the Mouse Genome Database.

    Motion artifacts in kidney stone imaging using single-source and dual-source dual-energy CT scanners: a phantom study

    Get PDF
    PURPOSE: Dual-energy computed tomography (DECT) has shown the capability of differentiating uric acid (UA) from non-UA stones with 90-100% accuracy. With the invention of dual-source (DS) scanners, both low- and high-energy images are acquired simultaneously. However, DECT can also be performed by sequential acquisition of both images on single-source (SS) scanners. The objective of this study is to investigate the effects of motion artifacts on stone classification using both SS-DECT and DS-DECT. METHODS: 114 kidney stones of different types and sizes were imaged on both DS-DECT and SS-DECT scanners with tube voltages of 80 and 140 kVp with and without induced motion. Postprocessing was conducted to create material-specific images from corresponding low- and high-energy images. The dual-energy ratio (DER) and stone material were determined and compared among different scans. RESULTS: For the motionless scans, all stones were correctly classified with SS-DECT, while two cystine stones were misclassified with DS-DECT. When motion was induced, 94% of the stones were misclassified with SS-DECT versus 11% with DS-DECT (P < 0.0001). Stone size was not a factor in stone misclassification under motion. Stone type was not a factor in stone misclassification under motion with SS-DECT, although with DS-DECT, cystine showed higher number of stone misclassification. CONCLUSIONS: Motion artifacts could result in stone misclassification in DECT. This effect is more pronounced in SS-DECT versus DS-DECT, especially if stones of different types lie in close proximity to each other. Further, possible misinterpretation of the number of stones (i.e., missing one, or thinking that there are two) in DS-DECT could be a potentially significant problem

    Predictors of Negative Outcomes and Causes of Loss to Follow Up Among Breast Cancer Patients in Port-au-Prince, Haiti

    Get PDF
    Objective: To determine predictors of negative outcomes and causes of loss to follow-up (LTFU) in patients with breast cancer in Haiti. Design and Methods: Patients seen by Innovating Health Internationalā€™s (IHI) cancer program were designated as LTFU after at least six months of non-contact (n=606). A cohort of LTFU breast cancer patients (n=101) was compared to the larger population of breast cancer patients (n=939), and a regression model constructed in order to identify risks for death and LTFU. Multiple calls were made to contact LTFU patients, and reasons for LTFU were recorded. Results: Death and LTFU status were associated with advanced stage (p\u3c0.0005), higher ECOG (p=0.011), and longer care (p\u3c0.0005; p=.03); LTFU status was lower with positive family history (p=0.022). 42.7% of LFTU patients were successfully contacted and 37.9% of these were reported deceased. The most common reasons for LTFU to clinic were obtaining care elsewhere and difficulty accessing care (due to distance, unrest, and money). Conclusions: Understanding causes of LTFU can suggest measures to reduce risk. LTFU was driven by the same factors as mortality, suggesting many ā€œlostā€ patients may be deceased; this conclusion is furthermore supported by the low rate of successful recontact and high rate of death in the LTFU population. These conclusions support the need for improved palliative care outreach. Furthermore, LTFU status in Haiti is in part due to difficulties accessing care due to issues of politics, infrastructure, and economics
    • ā€¦
    corecore