387 research outputs found

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Considerations for the VELO detector at the LHCb Upgrade II

    No full text
    The LHCb experiment is planning to operate with a 7.5-fold increase in instantaneous luminosity for LHC Runs 5 and 6. The performance of the Vertex Locator detector is crucial in the event reconstruction at the increased pile-up, providing real-time information to be used in the trigger. This document presents the considerations for a future detector with timing capabilities for each track and minimal amount of material. Simulation studies indicate that a track temporal resolution of 20 ps is required to achieve the physics performance desired in Upgrade II, while keeping the same spatial resolutions as in VELO Upgrade I. Key promising technologies are listed and an R&D plan to achieve the complete set of requirements is laid out

    Precision measurement of forward ZZ boson production in proton-proton collisions at s=13\sqrt{s} = 13 TeV

    No full text
    A precision measurement of the ZZ boson production cross-section at s=13\sqrt{s} = 13 TeV in the forward region is presented, using pppp collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb−1^{-1}. The production cross-section is measured using Z→Ό+Ό−Z\rightarrow\mu^+\mu^- events within the fiducial region defined as pseudorapidity 2.0202.020 GeV/cc for both muons and dimuon invariant mass 60<MΌΌ<12060<M_{\mu\mu}<120 GeV/c2c^2. The integrated cross-section is determined to be \begin{equation*} \sigma(Z\rightarrow\mu^+\mu^-) = 195.3 \pm 0.2 \pm 1.5 \pm 3.9~pb, \end{equation*} where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions, including a prediction at next-to-next-to-leading order in perturbative quantum chromodynamics and a prediction with resummation

    Analysis of Neutral B-Meson Decays into Two Muons

    No full text
    International audienceBranching fraction and effective lifetime measurements of the rare decay Bs0→Ό+ÎŒ- and searches for the decays B0→Ό+ÎŒ- and Bs0→Ό+ÎŒ-Îł are reported using proton-proton collision data collected with the LHCb detector at center-of-mass energies of 7, 8, and 13 TeV, corresponding to a luminosity of 9  fb-1. The branching fraction B(Bs0→Ό+ÎŒ-)=(3.09-0.43-0.11+0.46+0.15)×10-9 and the effective lifetime τ(Bs0→Ό+ÎŒ-)=2.07±0.29±0.03  ps are measured, where the first uncertainty is statistical and the second systematic. No significant signal for B0→Ό+ÎŒ- and Bs0→Ό+ÎŒ-Îł decays is found and upper limits B(B0→Ό+ÎŒ-)&lt;2.6×10-10 and B(Bs0→Ό+ÎŒ-Îł)&lt;2.0×10-9 at the 95% C.L. are determined, where the latter is limited to the range mΌΌ&gt;4.9  GeV/c2. The results are in agreement with the standard model expectations

    Search for the doubly heavy baryon Ξbc+\it{\Xi}_{bc}^{+} decaying to J/ψΞc+J/\it{\psi} \it{\Xi}_{c}^{+}

    No full text
    A first search for the decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb−1^{−1} recorded at centre-of-mass energies of 7, 8, and 13 TeV. Two peaking structures are seen with a local (global) significance of and standard deviations at masses of 6571 and 6694 MeV/, respectively. Upper limits are set on the baryon production cross-section times the branching fraction relative to that of the decay at centre-of-mass energies of 8 and 13 TeV, in the and in the rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to , respectively. Upper limits are presented as a function of the mass and lifetime.A first search for the Ξbc+→J/ψΞc+\it{\Xi}_{bc}^{+}\to J/\it{\psi}\it{\Xi}_{c}^{+} decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb−19\,\mathrm{fb}^{-1} recorded at centre-of-mass energies of 7, 8, and 13 TeV13\mathrm{\,Te\kern -0.1em V}. Two peaking structures are seen with a local (global) significance of 4.3 (2.8)4.3\,(2.8) and 4.1 (2.4)4.1\,(2.4) standard deviations at masses of 6571 MeV ⁣/c26571\,\mathrm{Me\kern -0.1em V\!/}c^2 and 6694 MeV ⁣/c26694\,\mathrm{Me\kern -0.1em V\!/}c^2, respectively. Upper limits are set on the Ξbc+\it{\Xi}_{bc}^{+} baryon production cross-section times the branching fraction relative to that of the Bc+→J/ψDs+B_{c}^{+}\to J/\it{\psi} D_{s}^{+} decay at centre-of-mass energies of 8 and 13 TeV13\mathrm{\,Te\kern -0.1em V}, in the Ξbc+\it{\Xi}_{bc}^{+} and in the Bc+B_{c}^{+} rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to 20 GeV ⁣/c20\,\mathrm{Ge\kern -0.1em V\!/}c, respectively. Upper limits are presented as a function of the Ξbc+\it{\Xi}_{bc}^{+} mass and lifetime

    Observation of the Mass Difference Between Neutral Charm-Meson Eigenstates

    No full text
    International audienceA measurement of mixing and CP violation in neutral charm mesons is performed using data reconstructed in proton-proton collisions collected by the LHCb experiment from 2016 to 2018, corresponding to an integrated luminosity of 5.4  fb-1. A total of 30.6 million D0→KS0π+π- decays are analyzed using a method optimized for the measurement of the mass difference between neutral charm-meson eigenstates. Allowing for CP violation in mixing and in the interference between mixing and decay, the mass and decay-width differences are measured to be xCP=[3.97±0.46(stat)±0.29(syst)]×10-3 and yCP=[4.59±1.20(stat)±0.85(syst)]×10-3, respectively. The CP-violating parameters are measured as Δx=[-0.27±0.18(stat)±0.01(syst)]×10-3 and Δy=[0.20±0.36(stat)±0.13(syst)]×10-3. This is the first observation of a nonzero mass difference in the D0 meson system, with a significance exceeding seven standard deviations. The data are consistent with CP symmetry and improve existing constraints on the associated parameters

    Angular analysis of B0→D∗−Ds∗+ {B}^0\to {D}^{\ast -}{D}_s^{\ast +} with Ds∗+→Ds+γ {D}_s^{\ast +}\to {D}_s^{+}\gamma decays

    No full text
    International audienceThe first full angular analysis of the B0→D∗−Ds∗+ {B}^0\to {D}^{\ast -}{D}_s^{\ast +} decay is performed using 6 fb−1^{−1} of pp collision data collected with the LHCb experiment at a centre-of-mass energy of 13 TeV. The Ds∗+→Ds+Îł {D}_s^{\ast +}\to {D}_s^{+}\gamma and D∗−^{*−} → D‟0π− {\overline{D}}^0{\pi}^{-} vector meson decays are used with the subsequent Ds+ {D}_s^{+} → K+^{+}K−^{−}π+^{+} and D‟0 {\overline{D}}^0 → K+^{+}π−^{−} decays. All helicity amplitudes and phases are measured, and the longitudinal polarisation fraction is determined to be fL_{L} = 0.578 ± 0.010 ± 0.011 with world-best precision, where the first uncertainty is statistical and the second is systematic. The pattern of helicity amplitude magnitudes is found to align with expectations from quark-helicity conservation in B decays. The ratio of branching fractions [ℬ(B0→D∗−Ds∗+ {B}^0\to {D}^{\ast -}{D}_s^{\ast +} ) × ℬ(Ds∗+→Ds+Îł {D}_s^{\ast +}\to {D}_s^{+}\gamma )]/ℬ(B0^{0} → D∗−Ds+^{*−} {D}_s^{+} ) is measured to be 2.045 ± 0.022 ± 0.071 with world-best precision. In addition, the first observation of the Cabibbo-suppressed Bs_{s} → D∗−Ds+^{*−} {D}_s^{+} decay is made with a significance of seven standard deviations. The branching fraction ratio ℬ(Bs_{s} → D∗−Ds+^{*−} {D}_s^{+} )/ℬ(B0^{0} → D∗−Ds+^{*−} {D}_s^{+} ) is measured to be 0.049 ± 0.006 ± 0.003 ± 0.002, where the third uncertainty is due to limited knowledge of the ratio of fragmentation fractions.[graphic not available: see fulltext
    • 

    corecore