136 research outputs found

    The Assessment of Mentalization: Measures for the Patient, the Therapist and the Interaction

    Get PDF
    Mentalization has been clearly defined in the literature as a relational concept and yet in surveys and transcript-based measures it is almost universally treated as an individual capacity. That approach has value but may not capture the emergent nature of mentalization, as it is jointly constructed within a relational context. We report here on a critical evaluation of measurement approaches commonly used to conceptualize and assess mentalization and argue for the value of conversation analysis (CA) as an alternative approach. A variety of approaches have been shown to have utility in assessing mentalization as an individual capacity. We illustrate how conversation analysis allows for an in-depth-analysis of mentalization as it is co-created across different contexts in real-life therapy sessions. This method of analysis shifts the focus from content to process. Conversation analysis is a potentially valuable tool to support training, to assess treatment integrity, and to improve outcomes with mentalization-based interventions

    Mechanistic understanding of ocean acidification impacts on larval feeding physiology and energy budgets of the mussel M. californianus

    Get PDF
    Ocean acidification (OA) - a process describing the ocean’s increase in dissolved carbon dioxide (PCO2) and a reduction in pH and aragonite saturation state (Ωar) due to higher concentrations of atmospheric CO2 – is considered a threat to bivalve mollusks and other marine calcifiers. While many studies have focused on the effects of OA on shell formation and growth, we present findings on the separate effects of PCO2, Ωar, and pH on larval feeding physiology (initiation of feeding, gut fullness, and ingestion rates) of the California mussel Mytilus californianus. We found elevated PCO2 delays initiation of feeding, while gut fullness and ingestion rates were best predicted by Ωar; however, pH was not found to have a significant effect on these feeding processes under the range of OA conditions tested. We also modeled how OA impacts on initial shell development and feeding physiology might subsequently affect larval energy budget components (e.g. scope for growth) and developmental rate to 260 µm shell length, a size at which larvae typically become pediveligers. Our model predicted that Ωar impacts on larval shell size and ingestion rates over the initial 48 h period of development would result in a developmental delay to the pediveliger stage of \u3e 4 days, compared with larvae initially developing in supersaturated conditions (Ωar \u3e 1). Collectively, these results suggest that predicted increases in PCO2 and reduced Ωar values may negatively impact feeding activity and energy balances of bivalve larvae, reducing their overall fitness and recruitment success

    Shallow landslides and vegetation at the catchment scale: A perspective

    Get PDF
    Shallow, rainfall-triggered landslides are an important catchment process that affect the rate and calibre of sediment within river networks and create a significant hazard, particularly when shallow landslides transform into rapidly moving debris flows. Forests and trees modify the magnitude and rate of shallow landsliding and have been used by land managers for centuries to mitigate their effects. We understand that at the tree and slope scale root reinforcement provides a significant role in stabilising slopes, but at the catchment scale root reinforcement models only partially explain where shallow landslides are likely to occur due to the complexity of subsurface material properties and hydrology. The challenge of scaling from slopes to catchments (from 1-D to 2-D) reflects the scale gap between geomorphic process understanding and modelling, and temporal evolution of material properties. Hence, our understanding does not, as yet, provide the necessary tools to allow vegetation to be targeted most effectively for landslide reduction. This paper aims to provide a perspective on the science underpinning the challenges land and catchment managers face in trying to reduce shallow landslide hazard, manage catchment sediment budgets, and develop tools for catchment targeting of vegetation. We use our understanding of rainfall-triggered shallow landslides in New Zealand and how vegetation has been used as a tool to reduce their incidence to demonstrate key points

    Seasonal patterns of estuarine acidification in seagrass beds of the Snohomish Estuary, WA

    Get PDF
    Recent studies have begun to explore physical and biogeochemical mechanisms of carbonate chemistry variability in a variety of coastal habitats, including coral reefs, upwelling margins, and inland seas. To our knowledge, there have been limited mechanistic studies of annual carbonate chemistry variability in nearshore estuarine environments. Here, we present autonomous sensor and grab sample data of carbonate chemistry covering a 10 month period from two subtidal seagrass bed sites in Possession Sound, WA. Simple mass balance stoichiometric models are used to evaluate seasonal drivers of carbonate system parameters in the seagrass beds. Simulations of increasing anthropogenic carbon (Canth) burdens in the habitats reveal seasonal differences in the magnitude of carbonate system responses. The addition of Canth alters the thermodynamic buffer factors (e.g. the Revelle factor) of the carbonate system, decreasing the system’s ability to buffer natural variability in the seagrass habitat on high-frequency (e.g. tidal, diel) and seasonal timescales. As a result, the most harmful carbonate system indices for many estuarine organisms (minimum pHT, minimum Ωarag, and maximum pCO2(s.w.)) change most rapidly with increasing Canth. We highlight how the observed seasonal climatology and non-linear response of the carbonate system to increasing Canth drive the timing of the crossing of established physiological stress thresholds for endemic organisms, as well as thresholds relevant for water quality management. In this system, the relative benefits of the seagrass beds in locally mitigating ocean acidification during the growing season increase with the higher atmospheric CO2 levels predicted toward 2100. Presently however, these mitigating effects are mixed due to intense diel cycling of CO2 driven by community metabolism

    Efficacy of a brief manualized intervention Managing Cancer and Living Meaningfully (CALM) adapted to German cancer care settings: study protocol for a randomized controlled trial

    Get PDF
    Background: Although psycho-oncological interventions have been shown to significantly reduce symptoms of anxiety and depression and enhance quality of life, a substantial number of patients with advanced cancer do not receive psycho-oncological interventions tailored to their individual situation. Given the lack of reliable data on the efficacy of psycho-oncological interventions in palliative care settings, we aim to examine the efficacy of a brief, manualized individual psychotherapy for patients with advanced cancer: Managing Cancer and Living Meaningfully (CALM). CALM aims to reduce depression and death anxiety, to strengthen communication with health care providers, and to enhance hope and meaning in life. We adapted the intervention for German cancer care settings. Methods/Design: We use a single-blinded randomized-controlled trial design with two treatment conditions: intervention group (IG, CALM) and control group (CG). Patients in the CG receive a usual non-manualized supportive psycho-oncological intervention (SPI). Patients are randomized between the IG and CG and assessed at baseline (t0), after three (t1) and after 6 months (t2). We include patients with a malignant solid tumor who have tumor stages of III or IV (UICC classification). Patients who are included in the study are at least 18 years old, speak German fluently, score greater than or equal to nine on the PHQ-9 or/and greater than or equal to five on the Distress Thermometer. It is further necessary that there is no evidence of severe cognitive impairments. We measure depression, anxiety, distress, quality of life, demoralization, symptom distress, fatigue as well as spiritual well-being, posttraumatic growth and close relationship experiences using validated questionnaires. We hypothesize that patients in the IG will show a significantly lower level of depression 6 months after baseline compared to patients in the CG. We further hypothesize a significant reduction in anxiety and fatigue as well as significant improvements in psychological and spiritual well-being, meaning and post-traumatic growth in the IG compared to CG 6 months after baseline. Discussion: Our study will contribute important statistical evidence on whether CALM can reduce depression and existential distress in a German sample of advanced and highly distressed cancer patients

    USE OF, SATISFACTION WITH, AND REQUIREMENTS FOR IN SITU pH SENSORS

    Get PDF
    The fundamental goal of this survey was to assess user needs and applications and to provide the focus for an Alliance for Coastal Technologies (ACT, www.act-us.info) Technology Verification of in situ pH sensors. The Customer Needs and Use Assessment strives to better understand how pH sensors are used. We hope this information can also assist manufacturers in refining pH sensor technologies to better address user priorities

    Interpretation and design of ocean acidification experiments in upwelling systems in the context of carbonate chemistry co-variation with temperature and oxygen

    Get PDF
    AbstractCoastal upwelling regimes are some of the most productive ecosystems in the ocean but are also among the most vulnerable to ocean acidification (OA) due to naturally high background concentrations of CO2. Yet our ability to predict how these ecosystems will respond to additional CO2 resulting from anthropogenic emissions is poor. To help address this uncertainty, researchers perform manipulative experiments where biological responses are evaluated across different CO2 partial pressure (pCO2) levels. In upwelling systems, however, contemporary carbonate chemistry variability remains only partly characterized and patterns of co-variation with other biologically important variables such as temperature and oxygen are just beginning to be explored in the context of OA experimental design. If co-variation among variables is prevalent, researchers risk performing OA experiments with control conditions that are not experienced by the focal species, potentially diminishing the ecological relevance of the experiment. Here, we synthesized a large carbonate chemistry dataset that consists of carbonate chemistry, temperature, and oxygen measurements from multiple moorings and ship-based sampling campaigns from the California Current Ecosystem (CCE), and includes fjord and tidal estuaries and open coastal waters. We evaluated patterns of pCO2 variability and highlight important co-variation between pCO2, temperature, and oxygen. We subsequently compared environmental pCO2–temperature measurements with conditions maintained in OA experiments that used organisms from the CCE. By drawing such comparisons, researchers can gain insight into the ecological relevance of previously published OA experiments, but also identify species or life history stages that may already be influenced by contemporary carbonate chemistry conditions. We illustrate the implications co-variation among environmental variables can have for the interpretation of OA experimental results and suggest an approach for designing experiments with pCO2 levels that better reflect OA hypotheses while simultaneously recognizing natural co-variation with other biologically relevant variables

    Global projections of temperature-attributable mortality due to enteric infections: a modelling study

    Get PDF
    Background: Mortality due to enteric infections is projected to increase because of global warming; however, the different temperature sensitivities of major enteric pathogens have not yet been considered in projections on a global scale. We aimed to project global temperature-attributable enteric infection mortality under various future scenarios of sociodemographic development and climate change.Methods: In this modelling study, we generated global projections in two stages. First, we forecasted baseline mortality from ten enteropathogens (non-typhoidal salmonella, Shigella, Campylobacter, cholera, enteropathogenic Escherichia coli, enterotoxigenic E coli, typhoid, rotavirus, norovirus, and Cryptosporidium) under several future sociodemographic development and health investment scenarios (ie, pessimistic, intermediate, and optimistic). We then estimated the mortality change from baseline attributable to global warming using the product of projected annual temperature anomalies and pathogen-specific temperature sensitivities.Findings: We estimated that in the period 2080–95, the global mean number of temperature-attributable deaths due to enteric infections could be as low as 6599 (95% empirical CI 5441–7757) under the optimistic sociodemographic development and climate change scenario, or as high as 83 888 (67 760–100 015) under the pessimistic scenario. Most of the projected temperature-attributable deaths were from shigellosis, cryptosporidiosis, and typhoid fever in sub-Saharan Africa and South Asia. Considerable reductions in the number of attributable deaths were from viral infections, such as rotaviral and noroviral enteritis, which resulted in net reductions in attributable enteric infection mortality under optimistic scenarios for Latin America and the Caribbean and East Asia and the Pacific.Interpretation: Temperature-attributable mortality could increase under warmer climate and unfavourable sociodemographic conditions. Mitigation policies for limiting global warming and sociodemographic development policies for low-income and middle-income countries might help reduce mortality from enteric infections in the future.Funding: Japan Society for the Promotion of Science, Japan Science and Technology Agency, and Spanish Ministry of Economy, Industry, and Competitiveness

    Quantifying the combined impacts of anthropogenic CO2 emissions and watershed alteration on estuary acidification at biologically-relevant time scales: a case study from Tillamook Bay, OR, USA

    Get PDF
    The impacts of ocean acidification (OA) on coastal water quality have been subject to intensive research in the past decade, but how emissions-driven OA combines with human modifications of coastal river inputs to affect estuarine acidification dynamics is less well understood. This study presents a methodology for quantifying the synergistic water quality impacts of OA and riverine acidification on biologically-relevant timescales through a case study from a small, temperate estuary influenced by coastal upwelling and watershed development. We characterized the dynamics and drivers of carbonate chemistry in Tillamook Bay, OR (USA), along with its coastal ocean and riverine end-members, through a series of synoptic samplings and continuous water quality monitoring from July 2017 to July 2018. Synoptic river sampling showed acidification and increased CO2 content in areas with higher proportions of watershed anthropogenic land use. We propagated the impacts of 1). the observed riverine acidification, and 2). modeled OA changes to incoming coastal ocean waters across the full estuarine salinity spectrum and quantified changes in estuarine carbonate chemistry at a 15-minute temporal resolution. The largest magnitude of acidification (-1.4 pHT units) was found in oligo- and mesohaline portions of the estuary due to the poor buffering characteristics of these waters, and was primarily driven by acidified riverine inputs. Despite this, emissions-driven OA is responsible for over 94% of anthropogenic carbon loading to Tillamook Bay and the dominant driver of acidification across most of the estuary due to its large tidal prism and relatively small river discharges. This dominance of ocean-sourced anthropogenic carbon challenges the efficacy of local management actions to ameliorate estuarine acidification impacts. Despite the relatively large acidification effects experienced in Tillamook Bay (-0.16 to -0.23 pHT units) as compared with typical open ocean change (approximately -0.1 pHT units), observations of estuarine pHT would meet existing state standards for pHT. Our analytical framework addresses pressing needs for water quality assessment and coastal resilience strategies to differentiate the impacts of anthropogenic acidification from natural variability in dynamic estuarine systems
    • …
    corecore