

Western Washington University
Western CEDAR

Salish Sea Ecosystem Conference

2018 Salish Sea Ecosystem Conference (Seattle, Wash.)

Apr 5th, 4:00 PM - 4:15 PM

Seasonal patterns of estuarine acidification in seagrass beds of the Snohomish Estuary, WA

Stephen Pacella U.S. Environmental Protection Agency, United States, spacella@coas.oregonstate.edu

Cheryl A. Brown U.S. Environmental Protection Agency, United States, brown.cheryl@epa.gov

T. Chris Mochon-Collura U.S. Environmental Protection Agency, United States, mochoncollura.tchris@epa.gov

George G. Waldbusser Oregon State Univ., United States, waldbuss@ceoas.oregonstate.edu

Rochelle G. Labiosa U.S. Environmental Protection Agency, United States, labiosa.rochelle@epa.gov

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Pacella, Stephen; Brown, Cheryl A.; Mochon-Collura, T. Chris; Waldbusser, George G.; Labiosa, Rochelle G.; and Hales, Burke, "Seasonal patterns of estuarine acidification in seagrass beds of the Snohomish Estuary, WA" (2018). *Salish Sea Ecosystem Conference*. 400. https://cedar.wwu.edu/ssec/2018ssec/allsessions/400

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

Speaker

Stephen Pacella, Cheryl A. Brown, T. Chris Mochon-Collura, George G. Waldbusser, Rochelle G. Labiosa, and Burke Hales

Seasonal patterns of estuarine acidification in seagrass beds of the Snohomish Estuary, WA

Stephen Pacella^{1,2}, Cheryl Brown¹, TChris Mochon Collura¹, George Waldbusser², Rochelle Labiosa³, and Burke Hales²

¹Pacific Coastal Ecology Branch, ORD, US EPA ²College of Earth, Ocean, and Atmospheric Sciences, Oregon State University ³Region 10, US EPA

Outline of talk

1. Why do we need to understand more about carbonate chemistry in estuarine habitats?

2. How does OA manifest in these habitats on daily and seasonal time scales?

3. What does this mean for exceedance of physiological and water quality thresholds?

Background

Organism and management thresholds

Project background and motivation

Project background and motivation

- 1. Short-term fluctuations in carbonate chemistry, or "carbonate weather", impact organismal fitness
- 2. Carbonate weather is predicted to become more extreme with ocean acidification
 -OA increases baseline [TCO₂]

-Local metabolism drives $[TCO_2]$ variability -OA + metabolism = \uparrow baseline $TCO_2 + \uparrow pH \& pCO_2$ variability

Intrinsic thermodynamic properties of the carbonate system, therefore widely applicable in metabolically intensive systems

Background

Daily and seasonal variability

Outline of talk

1. Why do we need to understand more about carbonate chemistry in estuarine habitats?

- Improved understanding of natural vs. OA-forced signals of variability
- Frequency, duration, and magnitude of organismal exposure to stressful conditions
- 2. How does OA manifest in these habitats on daily and seasonal time scales?
- 3. What does this mean for exceedance of physiological and water quality thresholds?

Organism and management thresholds

Field sampling

EPA Region 10 Dive Team

July 2015 – April 2016

- 2 study sites in subtidal seagrass beds (0.5m 4.5m)
- YSI, SeaFET, and SAMI pH deployments
- Grab samples for *T*CO₂ & *p*CO₂

Field observations

Background Observations + OA Sin	Daily and seasonal variability	Organism and management thresholds
----------------------------------	--------------------------------	------------------------------------

Field observations

OA simulations from 1765-2100

 C_{anth} modeled using adaption of the ΔC^* method (detailed in Pacella et al., 2018)

Atmospheric CO_2 from the RCP 8.5 scenario

Estimated C_{anth} agrees well with published values for contemporary surface waters in the California Current

How does OA affect daily and seasonal carbonate chemistry dynamics?

Background	Observations + OA Simulations	Daily and seasonal variability	Organism and management thresholds
------------	--------------------------------------	--------------------------------	------------------------------------

OA alters carbonate weather and seasonal climatology of carbonate chemistry

Pacella et al., 2018 PNAS

- OA reduces the ability of the system to buffer natural extremes, causing preferential amplification of low pH (and high pCO₂) during times of additive C_{anth} and metabolic CO₂
- Most harmful carbonate parameters for coastal organisms are changing up to 2x more rapidly than medians

Background	Observations + OA Simulations	Daily and seasonal variability	Organism and management thresholds

OA alters carbonate weather and seasonal climatology of carbonate chemistry

Outline of talk

1. Why do we need to understand more about carbonate chemistry in estuarine habitats?

- Improved understanding of natural vs. OA-forced signals of variability
- Frequency, duration, and magnitude of organismal exposure to stressful conditions

2. How does OA manifest in these habitats on daily and seasonal time scales?

- C_{anth} reduces ability of system to buffer natural carbon cycling
- High pCO₂ and low pH conditions changing most rapidly
- Carbonate weather and seasonal climatology more extreme for pH and pCO₂, dampened for Ω_{arag}

3. What does this mean for exceedance of physiological and water quality thresholds?

Organism and management thresholds

Regular exceedance of pH and pCO_2 thresholds by mid-century...

...currently in acceleration of Ω_{arag} exceedance?

Background	Observations + OA Simulations	Daily and seasonal variability	Organism and management thresholds
------------	-------------------------------	--------------------------------	------------------------------------

Rasmuson 2013, Adv. Mar. Bio.

Overlap of poor environmental conditions driven by OA and phenology of OA-sensitive life stages creates potential for organismal impacts

>10% annual exceedance by 2050, 14 years and 100ppm atmospheric CO₂ earlier due to reduced buffering

Background	Observations + OA Simulations	Daily and seasonal variability	Organism and management threshold
-			

EPA's recommended criterion states that the pH of marine waters "should not be changed more than 0.2 units outside the naturally occurring variation"

Bac	kgro	und
Duo	ישימי	ana

Outline of talk

1. Why do we need to understand more about carbonate chemistry in estuarine habitats?

- Improved understanding of natural vs. OA-forced signals of variability
- Frequency, duration, and magnitude of organismal exposure to stressful conditions
- 2. How does OA manifest in these habitats on daily and seasonal time scales?
 - C_{anth} reduces ability of system to buffer natural carbon cycling
 - High pCO₂ and low pH conditions changing most rapidly
 - Carbonate weather and seasonal climatology more extreme for pH and pCO₂, dampened for Ω_{arag}

3. What does this mean for exceedance of physiological and water quality thresholds?

- Earlier exposure to more severe stressful conditions for organisms
- OA drives variable time to exceedance of existing recommendations for water quality criteria

Key Take-aways

- 1. Estuaries are naturally dynamic chemical environments, which primes these systems for more rapid and severe changes to the CO₂ system with OA
 - Analogous to naturally high-CO₂ upwelling zones
- 2. The interaction of natural CO₂ cycling and C_{anth} in these habitats causes high pCO2, low pH, and low Ω_{arag} conditions to change most rapidly
 - Indices most relevant for organismal impacts
- 3. Understanding OA effects on time scales relevant for organisms will help identify times of synchronous threshold exceedance and OA-sensitive life stages

How does magnitude and duration of threshold exceedance translate into organismal/ecosystem impacts??

Background

Acknowledgments

RARE project team:Cheryl BrownTStephen PacellaRochelle LabiosaMegan Young

EPA PCEB: T Chris Mochon Collura Jim Kaldy Walt Nelson Ted DeWitt

Thanks to:

Tulalip Tribes EPA Region 10 Dive Team Jill Fullagar – EPA R10 Bruce Duncan – EPA R10 Marty Jacobson – EPA R10 Bill Rugh – EPA ISIRF Waldbusser Lab

