12,940 research outputs found
On the computation of the term of the series defining the center manifold for a scalar delay differential equation
In computing the third order terms of the series of powers of the center
manifold at an equilibrium point of a scalar delay differential equation, with
a single constant delay some problems occur at the term
More precisely, in order to determine the values at 0,
respectively of the function an algebraic system of
equations must be solved. We show that the two equations are dependent, hence
the system has an infinity of solutions. Then we show how we can overcome this
lack of uniqueness and provide a formula for Comment: Presented at the Conference on Applied and Industrial Mathematics-
CAIM 2011, Iasi, Romania, 22-25 September, 2011. Preprin
THE CONTROVERSY OF BULGE PACKS
Examines the question of what height packs are best suited for fresh fruit and vegetables bulge, flat or slack.Agribusiness,
Annular honeycomb seals: Test results for leakage and rotordynamic coefficients; comparisons to labyrinth and smooth configurations
Test results are presented for leakage and rotordynamic coefficients for seven honeycomb seals. All seals have the same radius, length, and clearance; however, the cell depths and diameters are varied. Rotordynamic data, which are presented, consist of the direct and cross-coupled stiffness coefficients and the direct damping coefficients. The rotordynamic-coefficient data show a considerable sensitivity to changes in cell dimensions; however, no clear trends are identifiable. Comparisons of test data for the honeycomb seals with labyrinth and smooth annular seals show the honeycomb seal had the best sealing (minimum leakage) performance, followed in order by the labyrinth and smooth seals. For prerotated fluid entering the seal, in the direction of shaft rotation, the honeycomb seal has the best rotordynamic stability followed in order by the labyrinth and smooth. For no prerotation, or fluid prerotation against shaft rotation, the labyrinth seal has the best rotordynamic stability followed in order by the smooth and honeycomb seals
Conformal Maps to Multiply-Slit Domains and Applications
By exploiting conformal maps to vertically slit regions in the complex plane, a recently developed rational spectral method [Tee and Trefethen, 2006] is able to solve PDEs with interior layer-like behaviour using significantly fewer collocation points than traditional spectral methods. The conformal maps are chosen to 'enlarge the region of analyticity' in the solution: an idea which can be extended to other numerical methods based upon global polynomial interpolation. Here we show how such maps can be rapidly computed in both periodic and nonperiodic geometries, and apply them to some challenging differential equations
Compensation for nonlinear effects due to high heat flux in thin-film thermometry
Compensation for nonlinear effects due to high heat flux in thin-film thermometr
Convection and heat transfer in layered sloping warm-water\ud aquifers
What convective flow is induced if a geologically-tratified groundwater aquifer is subject to a vertical temperature gradient? How strong is the flow? What is the nett heat transfer? Is the flow stable? How does the convection affect the subsequent species distribution if a pollutant finds its way into the aquifer? This paper begins to address such questions. Quantitative models for buoyancy-driven fluid flow in long, sloping warm-water aquifers with both smoothly- and discretely-layered structures are formulated. The steady-state profiles are calculated for the temperature and for the fluid specific volume flux (Darcy velocity) parallel to the boundaries in a sloping system subjected to a perpendicular temperature gradient, at low Rayleigh numbers. The conducted and advected heat fluxes are compared and it is shown that the system acts somewhat like a heat pipe. The maximum possible ratio of naturally advected-to-conducted heat transfer is determined, together with the corresponding permeability and thermal conductivity profiles
Commencement Address
Commencement address given by Frank W. Hale, Jr., Special Assistant to the President, Vice Provost for Minority Affairs, and Professor of Communication at The Ohio State University, to the Summer 1988 graduating class of The Ohio State University, St. John Arena, Columbus, Ohio, September 1, 1988
- …
