19 research outputs found

    Response of primary producers to water level fluctuations of Lake Peipsi

    Get PDF
    The amplitude of natural fluctuation between annual averages of the water level (WL) of Lake Peipsi (3555 km 2) is 1.5 m. A study aimed to examine the impact of WL fluctuations on phytoplankton, macrophytes, and their epiphyton was performed annually at littoral stations during 2005–2015. Also the characteristics of pelagic water were collated with the WL. Changes in littoral and pelagial phytoplankton were similar, with the exclusion of massive wind-caused accumulations of cyanobacteria in the littoral. At the lowest WL a significant increase occurred in (a) the biomass of phytoplankton and the share of phytoplankton-derived organic carbon in water and (b) the species richness and biomass of macrophytes, including submerged plants and macroalgae. The abundance of epiphytes did not reveal a clear relation with the WL. The ratios of biomasses in the years with the lowest and the highest average WL were 2.2 for Potamogeton spp. and 2.6 for phytoplankton. The assessment of ecological status at the minimum and the maximum WL differs at least by one quality class. Decisions about ecological status based on phytoplankton and large filamentous green algae at low water may be contrary to decisions based on macrophytes: high biomasses of phytoplankton and macroalgae indicate hypertrophic status, but species-rich macrovegetation and high biomasses of charophytes and elodeids are considered to be characteristic of meso- to eutrophic water bodies.This study was supported by the Estonian Target Financed Project SF0362483s03, by the Estonian State Monitoring Programme, and by the materials of the herbarium of the Department of Botany in the Institute of Agricultural and Environmental Sciences of the Estonian University of Life Sciences.This study was supported by the Estonian Target Financed Project SF0362483s03, by the Estonian State Monitoring Programme, and by the materials of the herbarium of the Department of Botany in the Institute of Agricultural and Environmental Sciences of the Estonian University of Life Sciences

    Factors behind the variability of phosphorus accumulation in Finnish lakes

    Get PDF
    Phosphorus retention (TPacc) is one of the major water quality regulators in lakes. The current study aimed at ascertaining the specific lake characteristics regulating TPacc. Moreover, we were interested whether NAO (North Atlantic Oscillation), a proxy of climatic forcing, can explain variability in TPacc, additionally to that ascribed to lake characteristics. Sediment cores were obtained from 21 Finnish lakes, subject to radiometric dating and measurements of TP concentrations. Principal components (PCs) were generated using lake characteristics that are usually included into the modelling of TPacc (e.g. lake area, lake depth, catchment area, P inflow) but also the parameters that the classical models usually missed (e.g. anoxic factor). We used significant principal components (PCs), specific combinations of lake characteristics and monthly NAO values as predictors of TPacc. Lake characteristics explained the bulk of TPacc variability. The most influential factors (positive drivers) behind TPacc included PC1 (representing mainly deep lakes), PC2 (small lakes with high levels of anoxia and water column stability), PC3 (productive lakes with large catchment area and short water residence time), PC4 (lakes with high water column stability, low anoxic factor and relatively high sediment focusing) and PC5 (lakes with high levels of P inflow, anoxia and long water residence time). Additionally, we found a potential negative effect of NAO in October on the annual TPacc. This NAO was significantly positively related to temperatures in surface and near-bottom water layer (also their difference) in autumn, suggesting the possible implications for the internal P dynamics. Increased mineralization of organic matter is the most likely explanation for the reduced TPacc associated with NAO-driven water temperature increase. The analysis presented here contributes to the knowledge of the factors controlling P retention. Moreover, this spatially and temporally comprehensive sediment data can potentially be a valuable source for modelling climate change implications.Peer reviewe

    Internal phosphorus loading due to sediment anoxia in shallow areas : implications for lake aeration treatments

    Get PDF
    Shallow lake sediments may be anoxic despite overlying aerated water. In the current study, we aimed to ascertain the contribution of shallow areas to internal phosphorus (P) loading due to sediment anoxia in stratifying lakes. Moreover, we analyzed relationships of the key water quality variables with internal P loading due to sediment anoxia originating solely from stratifying areas (IPobs) and that accounting also for the shallow areas (IPpred) for a set of Finnish lakes, including intentionally aerated and non-aerated lakes. Finally, using a broader set of lakes worldwide, we established a specific combination of lake characteristics that predict sediment P release due to sediment anoxia and linked it to the practices of aeration. Our results showed that shallow lake areas (a difference between IPpred and IPobs) contributed about half of the total P flux due to sediment anoxia. While all of the studied water quality variables related significantly to IPpred, only the concentration of total phosphorus (TP) in the near-bottom water layer related significantly to IPobs. This indicates the key importance of P release of shallow areas for water quality. The concentrations of TP in the surface water layer and chlorophyll a were significantly dependent on IPpred irrespectively of the treatment (aerated lakes or not). P supply from shallow areas may affect aeration effectiveness in stratifying lakes. IPpred was found to be dependent on the specific combination of lake characteristics (including mean and maximum depth, lake and catchment area, external P loading) PC3, driven mainly by external P loading. Hence, external load reduction should be considered as the first priority in lake water quality management. By linking the dependence of IPpred on PC3 to aeration practices, we determined the conditions that promise increased effectiveness of aeration treatments.Peer reviewe

    Outcomes of the littoral monitoring of a large shallow lake: a case of Lake Peipsi : [presentation]

    No full text
    The presentation took place at the 11th International Shallow Lakes Conference.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 951963, and was supported by the Estonian State Monitoring Programme.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 951963, and was supported by the Estonian State Monitoring Programme

    Narva Reservoir 2017 (Littoral samples)

    No full text
    Phytoplankton samples were picked with bottle from among reed stands or from above thick beds of submerged plants from the depth 20-30 cm, were preserved in Lugol’s (acidified iodine) solution and counted under an inverted microscope (Utermöhl, 1958). 3 ml of preserved sample was settled overnight and counted in random fields or transects. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). Macroscopic colonies of Gloeotrichia echinulata were enumerated visually in 500 ml measuring cylinder. Counting units are independent (single) algal cells, colonies or filaments/trichomes. One species or taxon may be present in the sample as different counting units and may be counted at different magnifications. References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9, 1-38. Edler, L. (ed.), 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Baltic Marine Biologists WG 9. (13) Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Hand-books, most representative Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin.. Popovský, J., Pfiester, L.A. 20008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian. Korshikov, A.A. (1953). Viznachnik prisnovodnikh vodorosley Ukrainsykoi RSR [Vyp] V. Pidklas Protokokovi (Protococcineae). Bakuol'ni (Vacuolales) ta Protokokovi (Protococcales) [The Freshwater Algae of the Ukrainian SSR. V. Sub-Class Protococcineae. Vacuolales and Protococcales]. pp. 1-439. Kyjv [Kiev]: Akad. NAUK URSR. In Ukrainian. Матвiенко О.М. 1965. Визначник прiсноводных водоростей Украǐнской РСР. 3. Частина 1. Золотисти водорости – Chrysophyta. Изд. Наукова Думка. Киǐв. 367 стр. In Ukrainian. Попова Т.Г. 1955. Определитель пресноводных водорослей. Вып. 7. Эвгленовые водоросли. Изд. Советская Наука, Москва. 282 стр. In Russian

    Lake Peipsi 2013 (Phytoplankton samples)

    No full text
    DatasetMethod: Phytoplankton samples were preserved in Lugol’s (acidified iodine) solution and counted under an inverted microscope (Utermöhl, 1958). 3 ml of preserved sample was settled overnight and counted in random fields or transects. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9, 1- 38. Edler, L. (ed.), 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Baltic Marine Biologists WG 9

    Long-term effects of extreme weather events and eutrophication on the fish community of shallow Lake Peipsi (Estonia/Russia)

    No full text
    The fish kill in lake Peipsi (Estonia/Russia) during the extraordinarily hot summer of 2010 evoked an investigation into the effects of environmental extremes and long-term eutrophication on the fish community of the lake. Current data on lake Peipsi indicate that temperature extremes and synergistic interactions with eutrophication have led to a radical restructuring of the fish community. Commercial landings of lake smelt, <em>Osmerus eperlanus eperlanus</em> m. <em>spirinchus</em> (Pallas), the previous dominant species of the fish community, have decreased dramatically since the 1930s, these declines being coupled with summer heat waves coinciding with low water levels. Gradual decline in smelt stock and catches was significantly related to a decline of near-bottom oxygen conditions and to a decrease in water transparency. The first documented fish kill in 1959 occurred only in the southern, most shallow and eutrophic lake (lake Pihkva). Recently, summer fish kill have become more frequent, involving larger areas of the lake. In addition to the cold-water species, <em>e.g. </em>smelt and vendace <em>Coregonus albula </em>(L.), the abundance of bottom-dwelling fishes such as ruffe <em>Gymnocephalus cernuus</em> (L.) and juvenile fish have significantly decreased after the 2010 heat wave probably due to hypoxia and warm water temperatures. This study showed that fish community structure in large shallow lakes may be very vulnerable to water temperature increases, especially temperature extremes in combination with eutrophication

    Lake Peipsi 2017 (Phytoplankton samples)

    No full text
    DatasetMethod: Phytoplankton samples were preserved in Lugol’s (acidified iodine) solution and counted under an inverted microscope (Utermöhl, 1958). 3 ml of preserved sample was settled overnight and counted in random fields or transects. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9, 1- 38. Edler, L. (ed.), 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Baltic Marine Biologists WG 9
    corecore