137 research outputs found

    Drosophila as an Emerging Model to Study Metastasis

    Get PDF
    Metastasis is the primary cause of human cancer-related deaths. Two recent studies describe a system for testing how multiple genetic events synergize to promote neoplastic growth and metastasis in Drosophila, paving the way for systematic approaches to understanding metastasis using the powerful tools of Drosophila genetics

    Drosophila as an emerging model to study metastasis

    Get PDF
    Metastasis is the primary cause of human cancer-related deaths. Two recent studies describe a system for testing how multiple genetic events synergize to promote neoplastic growth and metastasis in Drosophila, paving the way for systematic approaches to understanding metastasis using the powerful tools of Drosophila genetics

    Tumor Suppression by Cell Competition Through Regulation of the Hippo Pathway

    Get PDF
    Homeostatic mechanisms can eliminate abnormal cells to prevent diseases such as cancer. However, the underlying mechanisms of this surveillance are poorly understood. Here we investigated how clones of cells mutant for the neoplastic tumor suppressor gene scribble (scrib) are eliminated from Drosophila imaginal discs. When all cells in imaginal discs are mutant for scrib, they hyperactivate the Hippo pathway effector Yorkie (Yki), which drives growth of the discs into large neoplastic masses. Strikingly, when discs also contain normal cells, the scrib− cells do not overproliferate and eventually undergo apoptosis through JNK-dependent mechanisms. However, induction of apoptosis does not explain how scrib− cells are prevented from overproliferating. We report that cell competition between scrib− and wild-type cells prevents hyperproliferation by suppressing Yki activity in scrib− cells. Suppressing Yki activation is critical for scrib− clone elimination by cell competition, and experimental elevation of Yki activity in scrib−cells is sufficient to fuel their neoplastic growth. Thus, cell competition acts as a tumor-suppressing mechanism by regulating the Hippo pathway in scrib− cells. Animals have evolved homeostatic mechanisms to eliminate abnormal and cancerous cells, protecting the animal from harm (1). A prominent example of an organism removing abnormal cells that have the potential to form tumors is the elimination of scribble mutant (scrib−) cells from Drosophila imaginal discs (2–8). scrib is a conserved tumor-suppressor gene that is essential for the establishment of apical–basal cell polarity (8–10). Scrib is a scaffold protein that localizes to basolateral cell junctions and functions together with the Discs large (Dlg) and Lethal giant larvae (Lgl) adaptor proteins to govern apical–basal cell polarity in epithelial cells (8, 10). Imaginal discs from Drosophila larvae that are homozygous mutant for scrib, dlg, or lgl grow into large tumorous masses of neoplastic cells that display several hallmarks of carcinomas: They lose apical–basal cell polarity, hyperproliferate, and have defects in differentiation (10). Interestingly, the neoplastic phenotype of scrib− cells depends on their cellular environment. When scrib− cells are produced in patches (clones) of mutant cells that are surrounded by normal cells, they do not hyperproliferate, remain small, and eventually are eliminated (2–7, 11–13). Similar effects are observed for lgl− and dlg− clones, although they may not be eliminated very efficiently (11, 14, 15). Thus, the presence of wild-type cells prevents scrib−, lgl−, and dlg−cells from manifesting their tumorigenic potential (2–7, 11–15). Several groups have shown that the JNK stress–response pathway is activated in scrib− clones, leading to engulfment and death or extrusion of mutant cells from the epithelium (2–4, 6, 11, 16). Activation of JNK is required for the elimination of scrib− cells because blocking JNK activity in scrib−cells results in massive overgrowth of clones that is reminiscent of the tumorous overgrowth of entirely mutant discs (2–4, 6, 12, 13). However, blocking apoptosis does not cause overproliferation of scrib− clones (2, 3). Therefore, in addition to inducing apoptosis, JNK suppresses the potential of scrib− cells to hyperproliferate (2, 3). However, how scrib−cells are prevented from hyperproliferating is not known. The presence of normal cells is required for the elimination of tumorigenic scrib− clones because genetically ablating the normal tissue surrounding scrib− cells results in hyperproliferation of the scrib− cells (2, 3). It has been suggested that cell competition, a process by which viable cells of lower fitness are removed from a tissue and replaced through extra proliferation of fitter neighbors (17), is responsible for the elimination of scrib−and lgl− cell clones (2, 14). However, the hypothesis that scrib− and lgl− clones are eliminated by cell competition is in conflict with other reports and thus is controversial. It has been reported that cells with compromised Scrib or Lgl function exhibit elevated activity of Yorkie (Yki), a transcriptional coactivator and downstream effector of the Hippo growth-control pathway (13, 14, 18–20). The Hippo pathway is a conserved tumor-suppressor pathway that suppresses growth by antagonizing the activity of Yki (21). Thus, loss of Hippo pathway activity or elevated levels of Yki activity result in hyperproliferation of imaginal disc cells and resistance to apoptosis that normally would eliminate extra cells (21). Notably, an increase in Yki activity can rescue weak cells, such as cells heterozygous for Minute (M) mutations, from being eliminated by cell competition (22). M mutations occur in ribosomal protein-encoding genes and were the first class of genes identified as having cell-competition phenotypes (23). Homozygous M mutations are lethal, but heterozygous Manimals are viable, although their cells have reduced growth rates (23). In genetic mosaics, however, interaction between wild-type and M+/− cells leads to the elimination of the M+/−cells and expansion of the wild-type population, a phenomenon termed “cell competition” (17). Thus, M+/− cells are less competitive than wild-type cells. Importantly, elevated levels of Yki can rescue M+/− cells from being eliminated by cell competition and also can transform normal cells into supercompetitors that induce apoptosis in their neighbors and proliferate at their neighbors’ expense (22, 24, 25). Yki may increase the competitiveness of cells by inducing the expression of Myc, a known regulator of cell competition (24–27). However, the reports that scrib− cells have high levels of Yki activity and the hypothesis that scrib− cells are eliminated by cell competition present a paradox. If scrib− cells indeed have elevated levels of Yki activity, why does that elevated Yki activity not protect scrib−cells from cell competition? Here we investigated this paradox further. We show that scrib− cells are indeed eliminated by cell competition. We found that for this elimination to occur, scrib− cells undergo a JNK-dependent suppression of Yki activity; this suppression of Yki activity prevents scrib− cells from hyperproliferating and enables their removal. The modulation of Yki activity in scrib−cells thus is a critical effect of the JNK-dependent cell-competition process that removes such tumorigenic cells from imaginal discs. Finally we show that the Myc and Ras oncogenes, which can rescue scrib− clones from elimination (2, 4, 15), do so by conferring competitive fitness to scrib− cells and thereby prevent the down-regulation of Yki activity in scrib− cells. Our results thus further characterize the effects of cell-competition pathways in removing tumorigenic scrib− cells from imaginal discs

    Shar-pei Mediates Cell Proliferation Arrest During Imaginal Disc Growth in Drosophila

    Get PDF
    During animal development, organ size is determined primarily by the amount of cell proliferation, which must be tightly regulated to ensure the generation of properly proportioned organs. However, little is known about the molecular pathways that direct cells to stop proliferating when an organ has attained its proper size. We have identified mutations in a novel gene, shar-pei, that is required for proper termination of cell proliferation during Drosophila imaginal disc development. Clones of shar-pei mutant cells in imaginal discs produce enlarged tissues containing more cells of normal size. We show that this phenotype is the result of both increased cell proliferation and reduced apoptosis. Hence,shar-pei restricts cell proliferation and promotes apoptosis. By contrast, shar-pei is not required for cell differentiation and pattern formation of adult tissue. Shar-pei is also not required for cell cycle exit during terminal differentiation, indicating that the mechanisms directing cell proliferation arrest during organ growth are distinct from those directing cell cycle exit during terminal differentiation. shar-pei encodes a WW-domain-containing protein that has homologs in worms, mice and humans, suggesting that mechanisms of organ growth control are evolutionarily conserved

    The Fat Cadherin Acts through the Hippo Tumor-Suppressor Pathway to Regulate Tissue Size

    Get PDF
    Background: The Hippo tumor-suppressor pathway has emerged as a key signaling pathway that controls tissue size in Drosophila. Merlin, the Drosophila homolog of the human Neurofibromatosis type-2 (NF2) tumor-suppressor gene, and the related protein Expanded are the most upstream components of the Hippo pathway identified so far. However, components acting upstream of Expanded and Merlin, such as transmembrane receptors, have not yet been identified. Results: Here, we report that the protocadherin Fat acts as an upstream component in the Hippo pathway. Fat is a known tumor-suppressor gene in Drosophila, and fat mutants have severely overgrown imaginal discs. We found that the overgrowth phenotypes of fatmutants are similar to those of mutants in Hippo pathway components: fat mutant cells continued to proliferate after wild-type cells stopped proliferating, and fat mutant cells deregulated Hippo target genes such as cyclin E and diap1. Fat acts genetically and biochemically upstream of other Hippo pathway components such as Expanded, the Hippo and Warts kinases, and the transcriptional coactivator Yorkie. Fat is required for the stability of Expanded and its localization to the plasma membrane. In contrast, Fat is not required for Merlin localization, and Fat and Merlin act in parallel in growth regulation. Conclusions: Taken together, our data identify a cell-surface molecule that may act as a receptor of the Hippo signaling pathway

    MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway.

    Get PDF
    The Hippo pathway plays a central role in tissue homoeostasis, and its dysregulation contributes to tumorigenesis. Core components of the Hippo pathway include a kinase cascade of MST1/2 and LATS1/2 and the transcription co-activators YAP/TAZ. In response to stimulation, LATS1/2 phosphorylate and inhibit YAP/TAZ, the main effectors of the Hippo pathway. Accumulating evidence suggests that MST1/2 are not required for the regulation of YAP/TAZ. Here we show that deletion of LATS1/2 but not MST1/2 abolishes YAP/TAZ phosphorylation. We have identified MAP4K family members--Drosophila Happyhour homologues MAP4K1/2/3 and Misshapen homologues MAP4K4/6/7-as direct LATS1/2-activating kinases. Combined deletion of MAP4Ks and MST1/2, but neither alone, suppresses phosphorylation of LATS1/2 and YAP/TAZ in response to a wide range of signals. Our results demonstrate that MAP4Ks act in parallel to and are partially redundant with MST1/2 in the regulation of LATS1/2 and YAP/TAZ, and establish MAP4Ks as components of the expanded Hippo pathway

    Ectopic gene expression and homeotic transformations in arthropods using recombinant Sindbis viruses

    Get PDF
    AbstractBackground: The morphological diversity of arthropods makes them attractive subjects for studying the evolution of developmental mechanisms. Comparative analyses suggest that arthropod diversity has arisen largely as a result of changes in expression patterns of genes that control development. Direct analysis of how a particular gene functions in a given species during development is hindered by the lack of broadly applicable techniques for manipulating gene expression.Results: We report that the Arbovirus Sindbis can be used to deliver high levels of gene expression in vivo in a number of non-host arthropod species without causing cytopathic effects in infected cells or impairing development. Using recombinant Sindbis virus, we investigated the function of the homeotic gene Ultrabithorax in the development of butterfly wings and beetle embryos. Ectopic Ultrabithorax expression in butterfly forewing imaginal discs was sufficient to cause the transformation of characteristic forewing properties in the adult, including scale morphology and pigmentation, to those of the hindwing. Expression of Ultrabithorax in beetle embryos outside of its endogenous expression domain affected normal development of the body wall cuticle and appendages.Conclusions: The homeotic genes have long been thought to play an important role in the diversification of arthropod appendages. Using recombinant Sindbis virus, we were able to investigate homeotic gene function in non-model arthropod species. We found that Ultrabithorax is sufficient to confer hindwing identity in butterflies and alter normal development of anterior structures in beetles. Recombinant Sindbis virus has broad potential as a tool for analyzing how the function of developmental genes has changed during the diversification of arthropods

    Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies

    Get PDF
    Background: With over 20 parapatric races differing in their warningly colored wing patterns, the butterfly Heliconius erato provides a fascinating example of an adaptive radiation. Together with matching races of its co-mimic Heliconius melpomene, H. erato also represents a textbook case of MĂŒllerian mimicry, a phenomenon where common warning signals are shared amongst noxious organisms. It is of great interest to identify the specific genes that control the mimetic wing patterns of H. erato and H. melpomene. To this end we have undertaken comparative mapping and targeted genomic sequencing in both species. This paper reports on a comparative analysis of genomic sequences linked to color pattern mimicry genes in Heliconius. Results: Scoring AFLP polymorphisms in H. erato broods allowed us to survey loci at approximately 362 kb intervals across the genome. With this strategy we were able to identify markers tightly linked to two color pattern genes: D and Cr, which were then used to screen H. erato BAC libraries in order to identify clones for sequencing. Gene density across 600 kb of BAC sequences appeared relatively low, although the number of predicted open reading frames was typical for an insect. We focused analyses on the D- and Cr-linked H. erato BAC sequences and on the Yb-linked H. melpomene BAC sequence. A comparative analysis between homologous regions of H. erato (Cr-linked BAC) and H. melpomene (Yb-linked BAC) revealed high levels of sequence conservation and microsynteny between the two species. We found that repeated elements constitute 26% and 20% of BAC sequences from H. erato and H. melpomene respectively. The majority of these repetitive sequences appear to be novel, as they showed no significant similarity to any other available insect sequences. We also observed signs of fine scale conservation of gene order between Heliconius and the moth Bombyx mori, suggesting that lepidopteran genome architecture may be conserved over very long evolutionary time scales. Conclusion: Here we have demonstrated the tractability of progressing from a genetic linkage map to genomic sequence data in Heliconius butterflies. We have also shown that fine-scale gene order is highly conserved between distantly related Heliconius species, and also between Heliconius and B. mori. Together, these findings suggest that genome structure in macrolepidoptera might be very conserved, and show that mapping and positional cloning efforts in different lepidopteran species can be reciprocally informative

    Atypical PKCiota Contributes to Poor Prognosis Through Loss of Apical-basal Polarity and Cyclin E Overexpression in Ovarian Cancer

    Get PDF
    We show that atypical PKCÎč, which plays a critical role in the establishment and maintenance of epithelial cell polarity, is genomically amplified and overexpressed in serous epithelial ovarian cancers. Furthermore, PKCÎč protein is markedly increased or mislocalized in all serous ovarian cancers. An increased PKCÎč DNA copy number is associated with decreased progression-free survival in serous epithelial ovarian cancers. In a Drosophila in vivo epithelial tissue model, overexpression of persistently active atypical PKC results in defects in apical-basal polarity, increased Cyclin E protein expression, and increased proliferation. Similar to the Drosophila model, increased PKCÎč proteins levels are associated with increased Cyclin E protein expression and proliferation in ovarian cancers. In nonserous ovarian cancers, increased PKCÎč protein levels, particularly in the presence of Cyclin E, are associated with markedly decreased overall survival. These results implicate PKCÎč as a potential oncogene in ovarian cancer regulating epithelial cell polarity and proliferation and suggest that PKCÎč is a novel target for therapy

    Notch Signaling Activates Yorkie Non-Cell Autonomously in Drosophila

    Get PDF
    In Drosophila imaginal epithelia, cells mutant for the endocytic neoplastic tumor suppressor gene vps25 stimulate nearby untransformed cells to express Drosophila Inhibitor-of-Apoptosis-Protein-1 (DIAP-1), conferring resistance to apoptosis non-cell autonomously. Here, we show that the non-cell autonomous induction of DIAP-1 is mediated by Yorkie, the conserved downstream effector of Hippo signaling. The non-cell autonomous induction of Yorkie is due to Notch signaling from vps25 mutant cells. Moreover, activated Notch in normal cells is sufficient to induce non-cell autonomous Yorkie activity in wing imaginal discs. Our data identify a novel mechanism by which Notch promotes cell survival non-cell autonomously and by which neoplastic tumor cells generate a supportive microenvironment for tumor growth
    • 

    corecore