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72076 Tübingen
Germany
4Program in Developmental Biology
Baylor College of Medicine
Houston, Texas, 77030

Summary

Background: The Hippo tumor-suppressor pathway
has emerged as a key signaling pathway that controls
tissue size in Drosophila. Merlin, the Drosophila homo-
log of the human Neurofibromatosis type-2 (NF2) tu-
mor-suppressor gene, and the related protein Expanded
are the most upstream components of the Hippo path-
way identified so far. However, components acting up-
stream of Expanded and Merlin, such as transmem-
brane receptors, have not yet been identified.
Results: Here, we report that the protocadherin Fat acts
as an upstream component in the Hippo pathway. Fat is
a known tumor-suppressor gene in Drosophila, and fat
mutants have severely overgrown imaginal discs. We
found that the overgrowth phenotypes of fat mutants
are similar to those of mutants in Hippo pathway compo-
nents: fat mutant cells continued to proliferate after
wild-type cells stopped proliferating, and fat mutant
cells deregulated Hippo target genes such as cyclin E
and diap1. Fat acts genetically and biochemically up-
stream of other Hippo pathway components such as
Expanded, the Hippo and Warts kinases, and the tran-
scriptional coactivator Yorkie. Fat is required for the
stability of Expanded and its localization to the plasma
membrane. In contrast, Fat is not required for Merlin
localization, and Fat and Merlin act in parallel in growth
regulation.
Conclusions: Taken together, our data identify a cell-
surface molecule that may act as a receptor of the Hippo
signaling pathway.

Introduction

During development, the number of cells in growing tis-
sues is tightly regulated to ensure generation of organs

of proper size [1–3]. Cell number is controlled by regulat-
ing the generation of new cells through cell proliferation
and by regulating apoptosis to eliminate excess or dam-
aged cells [1–3]. The Hippo (Hpo) tumor-suppressor
pathway has emerged as a key signaling pathway that
controls tissue size in Drosophila (reviewed in [4]). Hpo
signaling restricts tissue size by promoting apoptosis
and cell-cycle arrest, and animals carrying clones of
cells mutant for hpo develop severely overgrown adult
structures. Several components of the Hpo pathway
have been discovered, and a signal transduction path-
way from the plasma membrane to the nucleus has be-
gun to emerge [5–16]. Merlin (Mer) and Expanded (Ex)
are currently the most upstream components known in
the Hpo pathway [5]. Mer and Ex are related 4.1, Ezrin,
Radixin, Moesin (FERM)-domain-containing adaptor
proteins localized to the plasma membrane [17, 18],
where they are thought to transduce a growth-regula-
tory signal to Hpo [5], a serine/threonine kinase of the
Sterile-20 family [8–12]. Hpo, together with its cofactor
Salvador (Sav) [6, 7], then causes phosphorylation and
thereby activation of Warts (Wts), a NDR-type kinase
[13, 14]. Wts, together with its cofactor, Mats (Mob as
a tumor suppressor) [15], phosphorylates and regulates
the activity of Yorkie (Yki), a transcriptional coactivator
[16]. Ex, Mer, Hpo, Sav, Wts, and Mats are negative reg-
ulators of growth, and mutations in these genes result in
dramatically overgrown tissues containing an excess
number of cells. Yki, on the other hand, is a positive reg-
ulator of growth, and overexpression of Yki causes se-
vere overgrowths that resemble the loss-of-function
phenotypes of the other pathway members, whereas
cells mutant for yki grow poorly [16]. Wts negatively reg-
ulates the transcriptional activity of Yki in a cell-culture-
based assay, possibly through phosphorylation [16]. It
was thus postulated that Wts promotes cell-prolifera-
tion arrest and apoptosis through the inactivation of
Yki, which otherwise induces the expression of genes
that drive cell proliferation and cell survival [16].

Here, we identify the Fat (Ft) protocadherin as an up-
stream component in the Hpo signaling pathway. Ft
acts as a tumor suppressor to restrict imaginal-disc
growth, and imaginal discs from ft mutants are much
larger than wild-type discs [19, 20]. This is because mu-
tant cells proliferate faster than normal and fail to arrest
proliferation when discs have reached their proper size
[19, 21, 22]. In addition to its tumor-suppressor function,
ft is also required for the establishment of normal planar-
cell polarity (PCP) in the eye, wing, and abdomen [23–28]
as well as for proximal-distal patterning of appendages
[19, 29].

For all three functions, Ft interacts with Dachsous
(Ds), a related protocadherin [30]. Like Ft, Ds is required
for PCP, proximal-distal patterning, and growth control
[26–35]. Ft and Ds are atypical cadherins with large ex-
tracellular and cytoplasmic domains that are different
from those of classical cadherins [20, 30]. Ft and Ds pref-
erentially bind each other, and it has been proposed that
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they act as receptor (Ft) and ligand (Ds) [27, 28, 32, 34,
35]. However, Ds also has Ft-independent functions in
growth control because imaginal discs from ft,ds double
mutants show more severe overgrowths than those
from homozygous ft or ds mutants [32]. Ft and Ds thus
act in parallel to regulate tissue size.

Notably, overexpression of a version of Ft that lacks
its extracellular domain is sufficient to rescue the growth
and PCP defects exhibited in ft mutant discs [32]. These
findings support a model in which Ft acts as a receptor
with its intracellular domain mediating the PCP and
growth-control signals [32]. Ft may mediate its effects
on PCP via the transcriptional corepressor Grunge
(Atrophin), which binds to the intracellular domain of Ft
[36]. The unconventional myosin Dachs (D) is required
for the growth and proximal-distal patterning functions
of Ft; however, the role of D in Ft signaling is not known
[29, 37]. The pathway through which Ft acts as a tumor-
suppressor gene to regulate tissue size is thus only
poorly understood.

Here, we provide evidence that Ft acts through the
Hpo pathway to regulate tissue size. We found that the
overgrowth phenotypes of ft mutations are similar to
those of mutations in Hpo pathway components. Ft is re-
quired for the localization of Ex to the plasma membrane
and acts genetically and biochemically upstream of Ex,
Hpo, Wts, and Yki. Taken together, our data place Ft

upstream of Ex and identify a cell-surface molecule
that may act as a receptor of the Hpo signaling pathway.

Results

Mutations in fat Deregulate Cell Proliferation
It has long been known that ft mutant discs are severely
overgrown because mutant cells overproliferate [19]. In-
deed, clones of cells mutant for ft produced dramatic
outgrowths in diverse adult structures such as anten-
nae, thoraxes, wings, and legs (Figures 1A and 1B and
not shown). In addition to growing beyond normal tissue
size, ft mutant cells have a growth advantage over wild-
type cells. ft mutant cells, marked by the absence of pig-
mentation (mutant for white [w2]), outcompeted red (w+)
pigmented wild-type cells and overtook nearly the entire
eye, although only about half of the cells were initially
made mutant for ft through ey-FLP-induced mitotic re-
combination (Figure 1D). In contrast, clones of cells
that just lacked pigmentation had no growth advantage
and allowed red cells to contribute to the adult eye
(Figure 1C). Thus, ft mutant cells outcompeted their
wild-type siblings, resulting in eyes that were nearly en-
tirely composed of ft mutant cells. This growth advan-
tage of ft mutant cells is already observed at the third-
instar stage, when ey-FLP-induced ft mutant clones
occupied nearly the entire disc tissues in contrast to

Figure 1. Fat Regulates Tissue Size and Cell-Cycle Arrest

(A and B) Scanning electron micrographs of a wild-type fly thorax and a thorax with ft422 mutant clones, which resulted in massive tissue over-

growths (arrow).

(C) Fly with eyes mosaic for a mutation in the white (w2) gene. For this experiment, we used the eye-specific FLP driver ey-FLP to induce mitotic

recombination in most of the cells in the developing eye. For increasing the area of the w2 cell clones, a cell-lethal mutation on the homologous

w+ chromosome was used to eliminate twin clones. The resulting eye was composed of about 70% w2 cells.

(D) Fly with a mosaic eye induced by the same method as in (C). This fly, however, carried a ftG-rv mutation on the w2 chromosome. The ftG-rv

mutant w2 cells made up nearly the entire eye, and these cells had thus outcompeted the red (wild-type) cells.

(E and F) Eye imaginal discs from third-instar larvae containing wt (E) and ftfd (F) mutant clones that were marked by the absence of GFP expres-

sion (gray). Clones were induced by using ey-FLP.

(G) Eye imaginal disc containing ftfd mutant clones. This disc was labeled for BrdU incorporation (red in [G] and gray in [G0]). Wild-type cells arrest

in G1 in the morphogenetic furrow (asterisks), and nondifferentiating cells go through one synchronous S phase in the second mitotic wave

(arrows). ftfd mutant cell clones showed ectopic cell proliferation posterior to the second mitotic wave (arrowheads). Anterior is to the left in

all discs.
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wild-type clones, which occupied less than half of the
discs (Figures 1E and 1F). Similarly, ft mutant cells
have a growth advantage in the developing wing [22].
Ft is thus a general growth regulator that is required to
restrict the rate of cell proliferation and the size of adult
structures.

Defects in the regulation of cell proliferation are read-
ily detectable in the developing eye, where posterior to
the second mitotic wave all cells cease to proliferate
[38, 39]. However, only a fraction of these cells have
been determined and begin to differentiate as photore-
ceptor cells, whereas the remaining cells are still unde-
termined and will later form the cone, pigment, and bris-
tle cells [38, 39]. In contrast to wild-type cells, ft mutant
cells failed to arrest the cell cycle after the second mi-
totic wave and instead continued to proliferate, as evi-
denced by ectopic Bromodeoxyuridine (BrdU) incorpo-
ration, which marks cells in S phase. (Figure 1G,
arrowhead). Double labeling with the neuronal marker
ELAV showed that ectopic proliferation occurred only
in developmentally uncommitted cells, but not in dif-
ferentiating photoreceptor cells (Figure S1 in the

Supplemental Data available online). We conclude that
Ft is required for cell-proliferation arrest of uncommitted
precursor cells.

Fat Regulates Hippo Target Genes
The adult overgrowth phenotypes, the growth advan-
tage of mutant cells, and the continued proliferation of
uncommitted precursor cells are characteristic for mu-
tations in Hpo pathway components [5]. These similari-
ties thus prompted us to test whether Ft regulates genes
known to be regulated by Hpo signaling. We found that ft
mutant clones cell-autonomously upregulated the ex-
pression of DIAP1 (Figure 2A), similar to cells lacking
Hpo activity [5–12]. This regulation was at the level of
transcription, because ft mutant cells upregulated the
expression of a lacZ reporter for the diap1 gene (Fig-
ure 2B). ft mutant cells also upregulated the expression
of Cyclin E, which is typical for hpo mutant cells
(Figure 3E) [8–12]. The regulation of Cyclin E and
DIAP1 expression are likely important downstream ef-
fects of Ft for the regulation of cell number and tissue
size.

Figure 2. Fat Regulates Hippo Target Genes

(A and B) Third-instar eye imaginal discs con-

taining ftfd mutant clones marked by the ab-

sence of GFP expression (green in [A] and

[B] and grayscale in [A00] and [B00]). (A–A00) ftfd

mutant clones upregulated DIAP1 levels (red

in [A], grayscale in [A0]). Arrowhead points

to a mutant area. (B–B00) ftfd mutant clones

(arrowhead) upregulated the expression of

a lacZ enhancer-trap insertion in the diap1

gene (red in [B], grayscale in [B0]).

(C–E) Discs stained to detect bGal expression

from a lacZ enhancer-trap insertion into the

ex gene (grayscale) in a wild-type back-

ground (C), in wings disc that expressed

FtDICD (D), and Yki (E) in the posterior com-

partment. Both, FtDICD and Yki expression

caused overgrowth of the posterior compart-

ment and induction of ex-lacZ expression.

(F) wtsx1 clones, marked by the absence of

GFP expression (green in [F], grayscale in

[F00]), induced the expression of a fj-lacZ re-

porter (red in [F], grayscale in [F0]) in an eye

imaginal disc. Anterior is to the left and dorsal

is up for all discs.
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We have recently reported that Hpo signaling sup-
presses the expression of the upstream components
Ex and Mer in a negative feedback loop [5]. This regula-
tion of ex and mer expression is independent of cell type
and is observed in multiple imaginal discs, indicating an
intimate connection between Hpo signaling and tran-
scriptional regulation of ex and mer. We thus wanted
to assay the expression of a lacZ enhancer-trap inser-
tion in the ex gene in ft mutant cells. However, because
ex and ft are located on the same chromosome arm and
because ex-lacZ is mutant for ex, we could not simply
assay ex-lacZ expression in ft,ex-lacZ double-mutant
clones because such clones would already upregulate
lacZ expression as a result of loss of Ex function. We
thus assayed ex-lacZ expression in discs that were ho-
mozygous for ft and heterozygous for ex-lacZ. To visual-
ize differences between ft mutant and wild-type cells in
the same disc, we rescued Ft function in the posterior
compartment by hh-Gal4-driven Ft expression. We
found that anterior ft mutant cells had elevated levels

of lacZ expression compared to posterior, rescued cells
(Figure S2). In addition, overexpression of a dominant-
negative version of Ft that lacks the intracellular domain
(FtDICD, [32]) in the posterior compartment induced
overgrowth and ex-lacZ expression (Figures 2C and
2D) in the posterior compartment similar to the effects
of Yki overexpression (Figure 2E), which is known to
induce the expression of Hpo target genes [16]. In sum-
mary, our experiments show that Ft regulates the
expression of cyclin E, diap1, and ex, known down-
stream target genes of the Hpo pathway.

Next we asked whether Hpo regulates the expression
of known Ft downstream genes. Ft regulates the expres-
sion of four jointed (fj), which encodes a Golgi-associated
protein that may regulate the activity of Ft and Ds [23, 24,
28]. fj is expressed in gradients in eye and wing discs, and
ft mutant clones derepress fj expression [28]. Similarly,
we found that wts mutant clones upregulated the expres-
sion of a fj-lacZ reporter (Figure 2F). Hpo signaling thus
regulates the expression of a known Ft target gene.

Figure 3. Fat Acts Genetically Upstream of

Known Hippo Pathway Components

Panels (A)–(D) show SEM images of eyes of

adult flies. The genotypes of the animals are

indicated above the panels. GMR-ex refers

to GMR-Gal4-driven overexpression of a

UAS-ex transgene. (A0)–(D0) show higher-

magnification images of the panels above

them. GMR-Gal4 drives expression of the

UAS-ex transgene in the developing eye be-

hind the morphogenetic furrow. ft mutant

heads were generated via ey-FLP-mediated

mitotic recombination to generate heads

that were basically entirely mutant for ft422.

Overexpression of Ex caused reduced and

rough eyes (B and B0), whereas loss of ft

caused eye overgrowth and duplications of

ventral vibrissae (arrowhead in [D]). Ex ex-

pression still caused small and rough eyes

in ft mutant heads (C and C0). Because Ex

was only expressed in the eye, it did not sup-

press the head overgrowth and extra ventral

vibrissae phenotypes of ft mutant heads (ar-

rowhead in [C]).

(E) ft422 mutant clones cell-autonomously up-

regulated the expression of Cyclin E (arrow-

heads), most conspicuously behind the sec-

ond mitotic wave (arrows). Mutant clones

were marked by the absence of GFP expres-

sion (green in [E] and grayscale in [E00]) and

Cyclin E expression is shown in red in (E)

and in grayscale in (E0).

(F) ft422 mutant clones in an eye disc that

overexpressed Hpo, driven by GMR-Gal4,

posterior to the morphogenetic furrow. Mu-

tant clones posterior to the second mitotic

wave did not induce Cyclin E expression, un-

like ft422 mutant clones in a wild-type back-

ground (E). Arrowheads point to mutant areas

and anterior is to the left. Coloring is the same

as in (E).

(G–I) Third-instar wing imaginal discs of the

following genotypes: (G) wt, (H) ftfd/ftG-rv,

and (I) ftfd ykiB5/ftG-rv. Removal of one copy

of the yki gene significantly suppressed the

overgrowth phenotypes of ft mutant imaginal

discs.
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Fat Acts Genetically Upstream of Known Hippo
Pathway Components

The striking similarities of the ft and hpo mutant pheno-
types and the shared target genes suggested that Ft
acts through Hpo signaling to regulate tissue size. To
test this hypothesis genetically, we performed epistasis
tests between mutations in ft and gain-of-function situ-
ations for other components of the Hpo pathway. If Ft
acts upstream in the Hpo pathway, then hyperactivation
of downstream components may rescue growth defects
of ft mutant cells.

In a first set of experiments, we asked whether hyper-
activation of Hpo signaling through overexpression of
Ex was epistatic to loss of ft function. Overexpression
of Ex hyperactivates Hpo signaling, causing a reduction
in cell proliferation and induction of apoptosis, pheno-
types opposite to those of Hpo loss of function [5, 8–
10, 12, 40, 41]. Overexpression of Ex during eye devel-
opment thus severely disrupted eye development and
resulted in small and rough eyes (Figures 3A and 3B)
[5, 40, 41]. On the other hand, removal of Ft function in
the entire head resulted in overgrown heads with slightly
bigger but deformed eyes and duplications of ventral vi-
brissae (Figure 3D). Overexpression of Ex in the devel-
oping eyes of ft mutant heads caused small and rough
eyes, very similar to the overexpression of Ex in a wild-
type background (Figure 3C). Loss of Ft function thus
did not rescue the Ex-induced phenotypes. Rather, the
overgrowth observed in ft mutant eyes was suppressed
by overexpressed Ex. ft mutant phenotypes, such as ex-
tra vibrissae, were still observed in the head cuticle,
where Ex was not overexpressed (Figure 3C, arrow-
head). The actions of Ex are thus epistatic to the loss
of Ft function.

Next, we asked whether hyperactivation of Hpo was
sufficient to rescue the transcriptional upregulation of
Cyclin E expression in ft mutant cell clones. To do this
experiment, we used the GMR-Gal4 driver to overex-
press Hpo specifically posterior to the morphogenetic
furrow. ft mutant clones robustly induced ectopic Cyclin
E expression posterior to the second mitotic wave
(Figure 3E, arrowheads). Hyperactivation of Hpo poste-
rior to the furrow suppressed the upregulation of Cyclin
E in ft mutant clones (Figure 3F arrowheads). Hpo activa-
tion is thus sufficient to rescue transcriptional defects in
ft mutant cells.

Finally, removal of one copy of the yki gene signifi-
cantly suppressed the overgrowth phenotypes of ft mu-
tant imaginal discs (Figures 3G–3I). Notably, nearly all
ftfd ykiB5/ftG-rv mutant animals developed into adults, al-
though the adults could not hatch from the pupal case
because they still had some leg defects and head over-
growths. In contrast, all ftfd/ftG-rv mutant animals died
during the early stages of pupal development and
showed severely overgrown imaginal disc derivatives.
Together, our results suggest that Ex, Hpo, and Yki act
downstream of Ft and support a model in which Ft
acts upstream as a receptor in the Hpo pathway.

Fat Regulates Warts Phosphorylation

and Yorkie Activity
In order to more directly test the hypothesis that Ft acts
as an upstream component in the Hpo pathway, we in-
vestigated whether Ft affected Wts phosphorylation

and the transcriptional activity of Yki. Previous analyses
showed that Hpo induces phosphorylation of Wts, and
that the phosphorylation status of Wts is a readout for
Hpo pathway activity [5, 10]. In S2 cells, overexpression
of Hpo, Sav, Ex, and Mer induces phosphorylation of
Wts, which is visualized as a shift in Wts mobility [5,
10]. We found that overexpression of full-length Ft did
not affect the mobility of Wts. However, expression of
Ft molecules that lacked the extracellular domain
(FtDECD) induced a Wts shift similar to the effects of
Ex and Mer or Hpo and Sav (Figure 4A) [5, 10]. This shift
was indeed the result of phosphorylation, because it
was reversed by phosphatase treatment (Figure 4A). In
addition, depletion of Hpo or Ex by RNAi abrogated
the induction of Wts phosphorylation by FtDECD
(Figure 4B). Endogenously expressed Hpo and Ex are
thus required for FtDECD to induce phosphorylation
of Wts.

The phosphorylation of Wts results in the activation of
the Wts kinase. Activated Wts then phosphorylates Yki
and suppresses its transcriptional-activator function
[16]. Huang et al. have established an S2-cell-based as-
say that reproduces the regulation of Yki by the Hpo sig-
naling pathway [16]. In this assay, Yki is fused to the
Gal4-DNA binding domain which recruits Yki to the pro-
moter of a UAS-luciferase reporter construct. The tran-
scriptional-activator function of Yki then induces ex-
pression of the luciferase reporter. This activity of Yki
is suppressed by activation of the Hpo pathway, for ex-
ample by coexpression of Hpo, Sav, and Wts [16] or by
coexpression of the upstream components Ex and Mer
[5]. We found that coexpression of full-length Ft had little
effect on Yki activity in this assay (Figure 4C). However,
expression of the truncated version of Ft, FtDECD, sup-
pressed Yki activity similarly to overexpression of Ex
and Mer (Figure 4C, [5]). This effect is specific, because
the expression of FtDECD, as with Ex and Mer, did not
affect the activity of full-length Gal4 (Figure 4D).

We next asked whether the suppression of Yki activity
by FtDECD required the Hpo and Wts kinases. Indeed,
knockdown of Wts or Hpo expression by RNAi com-
pletely rescued the suppressing effects of FtDECD and
restored the levels of Yki activity to those in control cells
that were treated with lacZ RNAi (Figure 4E). Impor-
tantly, knockdown of Wts or Hpo did not increase the ac-
tivity of Yki-Gal4 in cells that did not express the FtDECD
(Figure 4E). This result argues against Ft acting in a par-
allel pathway and supports a model in which Ft signals
through Hpo and Wts to regulate the activity of Yki. In
summary, our experiments show that Ft regulates the
activity of Yki, currently the most downstream compo-
nent known in the Hpo signal transduction pathway.

Overexpression of the truncated FtDECD but not the
full-length form of Ft acted as a dominantly activated
Ft also in vivo. Overexpression of full-length Ft in devel-
oping wings caused wing foreshortening, similar to
hypomorphic ft mutations ([32] and data not shown).
Expression of FtDECD, however, caused small and
narrow wings that resembled the phenotypes caused
by Hpo overexpression ([8, 10], Figures 4F and 4G).
This phenotype was suppressed by removing one
copy of wts (Figure 4H). Overexpression of FtDECD
thus appears to mimic active Ft and to activate the
Hpo pathway.
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Fat Is Required for Expanded Membrane Localization

Ft is a transmembrane protein, and it may thus act as
a receptor of the Hpo pathway. Ex and Mer, which act
upstream of Hpo, localize to the apical-lateral plasma
membrane similar to Ft ([17, 18, 28], not shown). This co-
localization raised the possibility that Ft, Ex, and Mer
may affect each other’s localization. However, ex and

mer were not required for correct localization of Ft,
and ex;mer double-mutant cells had increased amounts
of Ft at the membrane ([42] and data not shown). In con-
trast, Ex was largely absent from the plasma membrane
in ft mutant cells in a cell-autonomous manner (Fig-
ure 5A). We found that wild-type and ft mutant wing
discs expressed comparable levels of Ex protein

Figure 4. Fat Regulates Warts Phosphorylation and Yorkie Activity

(A and B) Ft overexpression induced Wts phosphorylation. Western blots to detect V5-tagged Wts protein in lysates from S2 cells overexpressing

different combinations of proteins as indicated on top of the panels. Expression of FtDECD induced a shift in Wts migration similar to the effects

of other Hpo pathway components. This shift was reverted by PP2A treatment (A) or protein knockdown of Ex and Hpo (B).

(C) The coactivator activity of Yki was negatively regulated by FtDECD but not by full-length Ft. S2 cells were transfected with UAS-luc (Gal4-

responsive luciferase reporter) plasmid along with the indicated plasmids. The plots show the levels of induced Luciferase activities that

were normalized to the level induced by the Gal4 DNA binding domain (Gal4DBD) alone (left-most bar). Error bars in (C), (D), and (E) represent

standard deviations from three independent transfections.

(D) The transcriptional-activator function of the full-length Gal4 was not affected by expression of FtDECD or Mer and Ex.

(E) The suppression of Yki-Gal4 activity by FtDECD required Hpo and Wts. S2 cells were transfected with the indicated plasmids and treated with

RNAi targeting wts, hpo, or lacZ as a control for comparison. Knockdown of Wts and Hpo completely suppressed the actions of FtDECD on

Yki-Gal4 activity.

(F–H) Images of wings from adults of the indicated genotypes. nub>ftDECD refers to nub-Gal4-driven overexpression of a UAS- ftDECD trans-

gene. Overexpression of ftDECD caused a small-wing phenotype (G). Flies that were additionally heterozygous mutant for wtsx1 showed a sup-

pression of the growth defects (H).
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(Figure S3), even though ft mutant cells upregulated ex
expression (Figure S2), suggesting that Ft affects the
stability of Ex as well as its localization. Strikingly, the lo-
calization of Mer was not notably affected in ft mutant
cells (Figure 5B). Rather, the levels of Mer were slightly
increased, probably as a result of the reduced levels of
Hpo signaling, which normally suppresses the expres-
sion of mer in a negative feedback loop [5]. Our results
thus indicate that Ft is specifically required for the local-
ization and stability of Ex.

Fat and Merlin Cooperate to Regulate Cell Number

in the Retina
As noted above (Figure 1), the overgrowth phenotypes
of ft mutant clones are very similar to those of hpo mu-
tant clones. However, the ft mutant phenotypes are
not as strong as those of complete loss of Hpo signaling.
Rather, the ft mutant phenotypes resemble partial loss
of Hpo signaling. This difference is most conspicuous
in the pupal retina. Whereas loss of hpo or wts causes
a massive increase in the number of interommatidial
cells [5, 8], ft mutant retinae show only a few more pig-
ment cells (Figures 5C and 5D). Interestingly, the pupal
retina phenotypes of ft are very similar to those of ex

mutants, which also reduce but do not abrogate Hpo
signaling (Figure 5E, [5]). We have previously reported
that Ex acts in parallel to Mer. Like ex mutants, mer
mutant retinae show some extra interommatidial cells
(Figure 5F), but ex;mer double-mutant retinae show
a large excess of interommatidial cells very similar to
complete loss of hpo signaling (Figure 5G, [5]). Because
Ft is required for membrane localization of Ex but not
Mer, we hypothesized that Ft may signal mainly through
Ex. If true, then Ft, like Ex, may act in parallel to Mer. In-
deed we found that ft;mer double-mutant retinae had
large amounts of extra interommatidial cells comparable
to ex;mer double mutants (Figure 5H). In contrast, ft,ex
double-mutant retinae did not have large numbers of in-
terommatidial cells and resembled the ex and ft single
mutants (Figure 5I). We note, however, that ft,ex dou-
ble-mutant clones had stronger overgrowth phenotypes
than the single mutants in the head outside the retina,
indicating that Ft and Ex may also have functions inde-
pendent of each other. Nevertheless, our data support
a model in which Ft signals mainly through Ex but in
parallel to Mer to regulate Hpo signaling.

The hypothesis that Ft acts mainly through Ex then
raised the question of whether there is another receptor

Figure 5. Fat Is Required for Expanded Membrane Localization, and Fat and Merlin Cooperate to Regulate Cell Numbers in the Retina

(A and B) ft mutant clones in wing imaginal discs had decreased levels of Ex but slightly increased levels of Mer proteins at the apical membranes

(red in [A] and [B] and grayscale in [A0] and [B0]). Clones are marked by the absence of GFP expression (green in [A] and [B]). Alleles were ft422 (A)

and ftfd (B). Arrowheads point to mutant clones.

(C–J) Mid-pupal retinae stained with Discs large (Dlg) antibodies that localize to apical junctions and visualize cell outlines. (C) shows a wild-type

retina. The following mutant retinae are shown: (D) ft422, (E) exBQ, (F) mer4, (G) mer4 exe1, (H) mer4 ft422, (I) ft422 exBQ, and (J) ft422 dsUA071. The

phenotype of the mer4 ft422 double-mutant retina was similar to the mer4 exe1 mutant retina.
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acting upstream of Mer. Because Ft acts in a partially
redundant manner with Ds in growth control [32], we
asked whether Ft acts together with Ds to control inter-
ommatidial cell number. Using a strong ds loss-of-func-
tion allele, we found that removal of Ds, together with ft,
did not significantly enhance the extra interommatidial
cell phenotype of ft mutant retinae (Figure 5J). Other, un-
known receptors may thus act upstream of Mer.

Discussion

Our data functionally link the growth-control function of
Ft with Hpo signaling. We propose a model in which Ft is
required to transduce a growth-regulatory signal to Hpo
and Wts, which in turn regulate the activity of Yki to con-
trol the expression of target genes (Figure 6). Several
lines of evidence place the growth-regulatory activity
of Ft upstream in the Hpo signaling pathway. First, the
overgrowth phenotypes of ft mutant cell clones resem-
ble those of loss of Hpo signaling. This includes the
overgrown imaginal discs and the overgrowths in adult
structures, the growth advantage of mutant cells over
wild-type cells, and the upregulation of known Hpo tar-
get genes. The combination of these phenotypes is
characteristic for loss of Hpo signaling. Second, the
phenotypes caused by overexpression of Ex and Hpo
are epistatic to the phenotypes caused by loss of ft,
and hyperactivation of Hpo is sufficient to rescue tran-
scriptional defects of ft mutant cells. Third, Ft induces
phosphorylation of Wts and regulates the activity of
Yki in a cell-culture-based assay. This effect on Yki re-
quires the function of Hpo and Wts. Fourth, Ft is required
for membrane localization and stability of Ex. Fifth, Ft
and Ex act in parallel to Mer to restrict interommatidial
cell number. Together, our data support a model in
which Ft acts upstream and through Hpo signaling to
perform its growth-control function (Figure 6).

ft mutants produce overgrowth phenotypes that show
all the hallmarks of hpo mutants. However, the pheno-
types of ft are not as strong as those of complete loss
of Hpo signaling and resemble partial loss of Hpo signal-
ing. In fact, the ft mutant phenotypes very closely resem-
ble the ex mutant phenotypes. We have previously re-
ported that Ex and Mer act in parallel to regulate Hpo
signaling and that mer;ex double mutants phenocopy
complete loss of Hpo signaling, whereas the single mu-
tants have weaker phenotypes [5]. Because ft mutant
cells have defects in Ex but not Mer localization, and be-
cause Ft acts in parallel to Mer similarly to Ex, Ft may act
mainly through Ex to regulate Hpo signaling. Other re-
ceptors may then act upstream of Mer to regulate Hpo
in parallel to Ft/Ex (Figure 6). Ds does not appear to
be this missing component, because ft,ds double mu-
tants did not produce the large excess of interommati-
dial cells typical for complete loss of Hpo signaling.
Finally, our data do not exclude more complicated
scenarios where Ft also regulates Mer and where Ex is
also regulated by other factors.

Ft is required not only for growth control but also for
planar cell polarity (PCP) and for proximal-distal (P-D)
patterning of the adult appendages [26–29, 32, 34, 35].
Ft mutant wings thus have abnormal hair orientation
(PCP defects), are foreshortened (P-D patterning de-
fects), and are overgrown (growth defects) [26–35].

Loss of Hpo signaling specifically affects tissue size,
but hpo, wts, and sav mutants do not show the defects
in proximal-distal patterning and in planar cell polarity
observed in ft mutants. Mutations in ex show very
weak polarity phenotypes in the eye, that are, however,
much weaker than the phenotypes observed in ft mu-
tants [40]. It thus appears that Hpo specifically mediates
the action of Ft on regulating tissue size.

How does Ft regulate Ex and Hpo pathway activity?
We found that ft mutant clones had reduced levels of
Ex localized to the plasma membrane. The defects in
Hpo pathway activity may thus be a consequence of
the loss of Ex from the plasma membrane. In this sce-
nario, Ft acts as a scaffold that is required to recruit Ex
to the membrane, making it available for another regula-
tor or receptor. Alternatively, Ft may act as a receptor
and modulate the activity of Ex. Because neither Ex
nor Ft has domains with known catalytic activities, it is
currently challenging to distinguish between these two
possibilities. A version of Ft that lacks the extracellular
domain, FtDECD, is sufficient to mediate the pleiotropic
functions of Ft in regulating PCP and growth [32], and we
found that FtDECD can regulate Hpo signaling. The in-
tracellular domain of Ft contains several conserved mo-
tifs, and one of them interacts with Atrophin, which may
mediate the effects of Ft on planar cell polarity [36]. Ft
may thus exert its diverse functions by recruiting and

Figure 6. Model of the Hpo Signaling Pathway

Model of how Ft regulates growth. Ft acts upstream of Ex to regulate

the activity of Yki through the Hpo and Wts kinases. Yki is a transcrip-

tional coactivator and presumably associates with a transcription

factor (X) to regulate the expression of target genes. Mer acts in par-

allel to Ex and may transduce a signal from another, unknown cell-

surface receptor. It is possible that Ft also requires Mer for its

growth-control function.
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interacting with members of different pathways through
distinct motifs in its intracellular domain.

Does a Fat-like receptor act upstream of Hpo signal-
ing in vertebrates? All currently known components of
the Hpo signaling pathway in Drosophila are highly con-
served in vertebrates. Given the conservation of the Hpo
pathway components, it is likely that also the human ho-
mologs act together in a pathway similar to the one dis-
covered in Drosophila. Indeed, the human Hpo homo-
logs bind to hSav1 and phosphorylate and activate
Lats1/2, the Wts homologs (reviewed in [4]). Vertebrates
have four Ft homologs, and Ft4, the ortholog of Dro-
sophila Ft, is conserved along its entire sequence in-
cluding the intracellular domain [43–45]. Currently, we
have no information on the function of vertebrate Ft4.
Several of the vertebrate Hpo pathway components
act as tumor-suppressor genes and have been impli-
cated in regulating cell proliferation and apoptosis (re-
viewed in [4]). It will be interesting to find out whether
Ft4 also regulates proliferation and apoptosis in verte-
brates and whether it does so through the Hpo pathway.
Our data that link Ft to Hpo signaling may thus have
important implications for the study and treatment of
neurofibromatosis and other cancers.

Experimental Procedures

Drosophila Stocks

Mutant clones were induced by using the FLP/FRT system [46, 47].

For generating ft,ex double-mutant, ft,ds double-mutant, or ft, ex,

mer, hpo, or wts mutant clones, the following alleles were flipped

against corresponding ubiGFP-marked FRT chromosomes: ft422

[26], ftG-rv (null) [19, 32], ftfd (null) [19, 32], dsUAO71 [33], exe1 (null)

[18], exBQ (null) [5], mer4 (null) [48], hpo42-47 (null) [10], and wtsx1

(null) [14]. Generation of mer;ex double-mutant clones was de-

scribed previously [5]. ex-lacZ expression in ft mutants was assayed

by using a strong hypomorphic ft allele, ftspy, that we found in a

genetic screen (unpublished data). Overexpression was done with

the UAS-GAL4 system [49] and the following stocks: UAS-ft [35],

UAS-ftDICD [32], UAS-ftDECD [32], UAS-ex [41], and UAS-hpo [8].

Other stocks were ex49 [5], ex697 [18], DIAP1-lacZ [50], CycE-lacZ

(16.4 construct [51]), fj-lacZ [52], wtsP2 [13], and ykiB5 [16].

Scanning Electron Microscopy and Immunohistochemistry

Scanning electron microscopy (SEM) of adult flies was done follow-

ing the HMDS method [7]. Antibody stainings of imaginal discs were

done as described [7]. The following antibodies were used (source

and dilutions in parentheses): mouse a-Dlg (DSHB, 1:300), guinea-

pig a-Mer (R. Fehon, 1:4000), guinea-pig a-Ex (R. Fehon, 1:2000),

rabbit a-Ex (A. Laughon, 1:1500), rat-a-Ft (M.A. Simon, 1:2000),

mouse a-BrdU (Becton-Dickinson, 1:50), mouse a-DIAP-1 (B. Hay,

1:200), mouse a-CycE (H. Richardson, 1:40), and mouse a-bGal

(Promega, 1:2000). Secondary antibodies were donkey Fab frag-

ments from Jackson ImmunoResearch. BrdU incorporation was

done as described by incorporating BrdU for 1 hr [7].

Cell Culture and Western Blotting

The Ex and Mer constructs were described in [5]. For Ft expression,

the Ft coding region was excised from a pUAST-Ft construct [35] by

NotI-KpnI digestion and inserted into the pAc5.1 vector (Invitrogen).

The FtDECD construct was generated by PCR and consists of the Ft

signal peptide fused to a V5 tag followed by the Ft coding sequence

from amino acid 4550 to the stop codon cloned in the pAc5.1 vector.

All other constructs were gifts from Duojia Pan [10, 16]. Drosophila

S2 cells, cultured in Schneider’s medium containing 10% fetal bo-

vine serum (FBS) and antibiotics, were transiently transfected by us-

ing Cellfectin (Invitrogen) and collected 48 hr after transfection. Cells

were lysed in SDS sample buffer, and western blots were performed

according to standard protocols. Antibodies used were a-V5 (Invi-

trogen), a-aTub (Sigma, St. Louis, Missouri), and a-Ex (R. Fehon).

For phosphatase treatments, cells were lysed in IP buffer (150 mM

NaCl, 50 mM Tris-HCl [pH 8.0], 0.5% NP40, 1 mM PMSF, 5 mg/ml

aprotinin, 5 mg/ml leupeptin) and V5-Wts proteins were immunopre-

cipitated. Beads were washed three times in phosphatase treatment

buffer (50 mM Tris-HCl [pH 7.5], 0.1 mM EDTA, 0.5 mM MgCl2, 0.5

mM MnCl2, 0.5 mM CaCl2), and 0.3 units of PP2A (Upstate, Charlot-

tesville, Virginia) were added in a total volume of 75 ml, followed by 30

min incubation at 37�C. The reaction was terminated by addition of

an equal volume of SDS sample buffer.

Luciferase reporter-gene assays were performed by transfecting

10 ng of Yki-Gal4 or Gal4-FL plasmids with 0.5 ng of UAS-luciferase

plasmid in triplicates with or without plasmids expressing Ex, Mer,

Hpo, Sav, Wts, Ft, and FtDECD in 48-well plates. Luciferase

assays were performed with the Dual Luciferase Reporter Assay

System (Promega) and a 20/20n Luminometry System with Single

Auto-Injector (Promega) 96 hr after transfection.

For protein knockdown, dsRNAs were synthesized with the

MEGAscript RNAi kit (Ambion) from PCR products containing the

T7 promoter (TAATACGACTCACTATAGGG). Primer pairs were as

follows: lacZ forward, 50-TAATACGACTCACTATAGGGGTTTGTTAC

TCGCTCACATT-30; lacZ reverse, 50-TAATACGACTCACTATAGGGT

CGAATCAGCAACGGCTTGC-30; wts forward, 50-TAATACGACTCAC

TATAGGGAAGGCGGCCACGGTG-30; wts reverse, 50-TAATACGA

CTCACTATAGGGCTCCTTCTCCTTGGAGATCT-30; hpo forward, 50-

TAATACGACTCACTATAGGGCTGTGTGGCAGACATATGGT-30; hpo

reverse, 50-TAATACGACTCACTATAGGGCTCATCCACACCTTGCT

CT-30; ex forward, 50-TAATACGACTCACTATAGGGGAGAAGAAAC

GGAGAGTGTAT-30; and ex reverse, 50-TAATACGACTCACTATA

GGGGGCCACAGAGACCAGTTTT-30.

Cells were incubated with 3.5 mg dsRNA/well (48-well plates) in

125 ml Schneider’s medium. After 1 hr, 125 ml Schneider’s medium

containing 20% FBS was added to each well.

Supplemental Data

Supplemental Data include three figures and are available with this

article online at: http://www.current-biology.com/cgi/content/full/

16/21/2090/DC1/.
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