148 research outputs found

    Monoplacophoran mitochondrial genomes: convergent gene arrangements and little phylogenetic signal

    Get PDF
    Background: Although recent studies have greatly advanced understanding of deep molluscan phylogeny, placement of some taxa remains uncertain as different datasets support competing class-relationships. Traditionally, morphologists have placed Monoplacophora, a group of morphologically simple, limpet-like molluscs as sister group to all other conchiferans (shelled molluscs other than Polyplacophora), a grouping that is supported by the latest large-scale phylogenomic study that includes Laevipilina. However, molecular datasets dominated by nuclear ribosomal genes support Monoplacophora + Polyplacophora (Serialia). Here, we evaluate the potential of mitochondrial genome data for resolving placement of Monoplacophora. Results: Two complete (Laevipilina antarctica and Vema ewingi) and one partial (Laevipilina hyalina) mitochondrial genomes were sequenced, assembled, and compared. All three genomes show a highly similar architecture including an unusually high number of non-coding regions. Comparison of monoplacophoran gene order shows a gene arrangement pattern not previously reported;there is an inversion of one large gene cluster. Our reanalyses of recently published polyplacophoran mitogenomes show, however, that this feature is also present in some chiton species. Maximum Likelihood and Bayesian Inference analyses of 13 mitochondrial protein-coding genes failed to robustly place Monoplacophora and hypothesis testing could not reject any of the evaluated placements of Monoplacophora. Conclusions: Under both serialian or aculiferan-conchiferan scenarios, the observed gene cluster inversion appears to be a convergent evolution of gene arrangements in molluscs. Our phylogenetic results are inconclusive and sensitive to taxon sampling. Aculifera (Polyplacophora + Aplacophora) and Conchifera were never recovered. However, some analyses recovered Serialia (Monoplacophora + Polyplacophora), Diasoma (Bivalvia + Scaphopoda) or Pleistomollusca (Bivalvia + Gastropoda). Although we could not shed light on deep evolutionary traits of Mollusca we found unique patterns of gene arrangements that are common to monoplacophoran and chitonine polyplacophoran species but not to acanthochitonine Polyplacophora

    Heavy Drinking Is Associated with Poor Blood Pressure Control in the REasons for Geographic and Racial Differences in Stroke (REGARDS) Study

    Get PDF
    Alcohol intake has been shown to have a J-shaped association with blood pressure (BP). However, this association has not been examined in mixed race populations or in people with diabetes where tighter blood pressure control is recommended. Participants in the REGARDS study who were 45 years or older (n = 30,239) were included. Medical history (including self-reported alcohol intake) was collected by telephone while blood collection and clinical measurements were done during an in-home visit. We defined diabetes as use of medications and/or fasting glucose ≥ 126 mg/dL and hypertension as use of blood pressure lowering medications and/or BP ≥ 140/90 mmHg or BP ≥ 130/80 mmHg in people with diabetes. After adjustment for confounders, heavy drinking was associated with an increased odds of hypertension (OR = 1.59; 95% CI = 1.37, 1.87). Diabetes and gender significantly modified (interaction P < 0.05 for both) the association between alcohol use and hypertension, although heavy drinking remained associated with increased odds of hypertension in sub-group analyses. We did not observe the previously described J-shaped relationship in any sub-group except white females. These data suggest heavy alcohol consumption is associated with poor BP control and that heavy drinkers may want to consider limiting alcohol intake in order to manage hypertension

    Multiple uncontrolled conditions and blood pressure medication intensification: an observational study

    Get PDF
    Abstract Background Multiple uncontrolled medical conditions may act as competing demands for clinical decision making. We hypothesized that multiple uncontrolled cardiovascular risk factors would decrease blood pressure (BP) medication intensification among uncontrolled hypertensive patients. Methods We observed 946 encounters at two VA primary care clinics from May through August 2006. After each encounter, clinicians recorded BP medication intensification (BP medication was added or titrated). Demographic, clinical, and laboratory information were collected from the medical record. We examined BP medication intensification by presence and control of diabetes and/or hyperlipidemia. 'Uncontrolled' was defined as hemoglobin A1c &#8805; for diabetes, BP &#8805; 140/90 mmHg (&#8805; 130/80 mmHg if diabetes present) for hypertension, and low density lipoprotein cholesterol (LDL-c) &#8805; 130 mg/dl (&#8805; 100 mg/dl if diabetes present) for hyperlipidemia. Hierarchical regression models accounted for patient clustering and adjusted medication intensification for age, systolic BP, and number of medications. Results Among 387 patients with uncontrolled hypertension, 51.4% had diabetes (25.3% were uncontrolled) and 73.4% had hyperlipidemia (22.7% were uncontrolled). The BP medication intensification rate was 34.9% overall, but higher in individuals with uncontrolled diabetes and uncontrolled hyperlipidemia: 52.8% overall and 70.6% if systolic BP &#8805; 10 mmHg above goal. Intensification rates were lowest if diabetes or hyperlipidemia were controlled, lower than if diabetes or hyperlipidemia were not present. Multivariable adjustment yielded similar results. Conclusions The presence of uncontrolled diabetes and hyperlipidemia was associated with more guideline-concordant hypertension care, particularly if BP was far from goal. Efforts to understand and improve BP medication intensification in patients with controlled diabetes and/or hyperlipidemia are warranted.http://deepblue.lib.umich.edu/bitstream/2027.42/78266/1/1748-5908-5-55.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78266/2/1748-5908-5-55.pdfPeer Reviewe

    Annelid phylogeny and the status of Sipuncula and Echiura

    Get PDF
    BACKGROUND: Annelida comprises an ancient and ecologically important animal phylum with over 16,500 described species and members are the dominant macrofauna of the deep sea. Traditionally, two major groups are distinguished: Clitellata (including earthworms, leeches) and "Polychaeta" (mostly marine worms). Recent analyses of molecular data suggest that Annelida may include other taxa once considered separate phyla (i.e., Echiura, and Sipuncula) and that Clitellata are derived annelids, thus rendering "Polychaeta" paraphyletic; however, this contradicts classification schemes of annelids developed from recent analyses of morphological characters. Given that deep-level evolutionary relationships of Annelida are poorly understood, we have analyzed comprehensive datasets based on nuclear and mitochondrial genes, and have applied rigorous testing of alternative hypotheses so that we can move towards the robust reconstruction of annelid history needed to interpret animal body plan evolution. RESULTS: Sipuncula, Echiura, Siboglinidae, and Clitellata are all nested within polychaete annelids according to phylogenetic analyses of three nuclear genes (18S rRNA, 28S rRNA, EF1α; 4552 nucleotide positions analyzed) for 81 taxa, and 11 nuclear and mitochondrial genes for 10 taxa (additional: 12S rRNA, 16S rRNA, ATP8, COX1-3, CYTB, NAD6; 11,454 nucleotide positions analyzed). For the first time, these findings are substantiated using approximately unbiased tests and non-scaled bootstrap probability tests that compare alternative hypotheses. For echiurans, the polychaete group Capitellidae is corroborated as the sister taxon; while the exact placement of Sipuncula within Annelida is still uncertain, our analyses suggest an affiliation with terebellimorphs. Siboglinids are in a clade with other sabellimorphs, and clitellates fall within a polychaete clade with aeolosomatids as their possible sister group. None of our analyses support the major polychaete clades reflected in the current classification scheme of annelids, and hypothesis testing significantly rejects monophyly of Scolecida, Palpata, Canalipalpata, and Aciculata. CONCLUSION: Using multiple genes and explicit hypothesis testing, we show that Echiura, Siboglinidae, and Clitellata are derived annelids with polychaete sister taxa, and that Sipuncula should be included within annelids. The traditional composition of Annelida greatly underestimates the morphological diversity of this group, and inclusion of Sipuncula and Echiura implies that patterns of segmentation within annelids have been evolutionarily labile. Relationships within Annelida based on our analyses of multiple genes challenge the current classification scheme, and some alternative hypotheses are provided

    Dramatic Shifts in Benthic Microbial Eukaryote Communities following the Deepwater Horizon Oil Spill

    Get PDF
    Benthic habitats harbour a significant (yet unexplored) diversity of microscopic eukaryote taxa, including metazoan phyla, protists, algae and fungi. These groups are thought to underpin ecosystem functioning across diverse marine environments. Coastal marine habitats in the Gulf of Mexico experienced visible, heavy impacts following the Deepwater Horizon oil spill in 2010, yet our scant knowledge of prior eukaryotic biodiversity has precluded a thorough assessment of this disturbance. Using a marker gene and morphological approach, we present an intensive evaluation of microbial eukaryote communities prior to and following oiling around heavily impacted shorelines. Our results show significant changes in community structure, with pre-spill assemblages of diverse Metazoa giving way to dominant fungal communities in post-spill sediments. Post-spill fungal taxa exhibit low richness and are characterized by an abundance of known hydrocarbon-degrading genera, compared to prior communities that contained smaller and more diverse fungal assemblages. Comparative taxonomic data from nematodes further suggests drastic impacts; while pre-spill samples exhibit high richness and evenness of genera, post-spill communities contain mainly predatory and scavenger taxa alongside an abundance of juveniles. Based on this community analysis, our data suggest considerable (hidden) initial impacts across Gulf beaches may be ongoing, despite the disappearance of visible surface oil in the region

    The complete mitochondrial genome of Flustra foliacea (Ectoprocta, Cheilostomata) - compositional bias affects phylogenetic analyses of lophotrochozoan relationships

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phylogenetic relationships of the lophophorate lineages, ectoprocts, brachiopods and phoronids, within Lophotrochozoa are still controversial. We sequenced an additional mitochondrial genome of the most species-rich lophophorate lineage, the ectoprocts. Although it is known that there are large differences in the nucleotide composition of mitochondrial sequences of different lineages as well as in the amino acid composition of the encoded proteins, this bias is often not considered in phylogenetic analyses. We applied several approaches for reducing compositional bias and saturation in the phylogenetic analyses of the mitochondrial sequences.</p> <p>Results</p> <p>The complete mitochondrial genome (16,089 bp) of <it>Flustra foliacea </it>(Ectoprocta, Gymnolaemata, Cheilostomata) was sequenced. All protein-encoding, rRNA and tRNA genes are transcribed from the same strand. <it>Flustra </it>shares long intergenic sequences with the cheilostomate ectoproct <it>Bugula</it>, which might be a synapomorphy of these taxa. Further synapomorphies might be the loss of the DHU arm of the tRNA L(UUR), the loss of the DHU arm of the tRNA S(UCN) and the unique anticodon sequence GAG of the tRNA L(CUN). The gene order of the mitochondrial genome of <it>Flustra </it>differs strongly from that of the other known ectoprocts. Phylogenetic analyses of mitochondrial nucleotide and amino acid data sets show that the lophophorate lineages are more closely related to trochozoan phyla than to deuterostomes or ecdysozoans confirming the Lophotrochozoa hypothesis. Furthermore, they support the monophyly of Cheilostomata and Ectoprocta. However, the relationships of the lophophorate lineages within Lophotrochozoa differ strongly depending on the data set and the used method. Different approaches for reducing heterogeneity in nucleotide and amino acid data sets and saturation did not result in a more robust resolution of lophotrochozoan relationships.</p> <p>Conclusion</p> <p>The contradictory and usually weakly supported phylogenetic reconstructions of the relationships among lophotrochozoan phyla based on mitochondrial sequences indicate that these alone do not contain enough information for a robust resolution of the relations of the lophotrochozoan phyla. The mitochondrial gene order is also not useful for inferring their phylogenetic relationships, because it is highly variable in ectoprocts, brachiopods and some other lophotrochozoan phyla. However, our study revealed several rare genomic changes like the evolution of long intergenic sequences and changes in the structure of tRNAs, which may be helpful for reconstructing ectoproct phylogeny.</p

    Barcoding of Arrow Worms (Phylum Chaetognatha) from Three Oceans: Genetic Diversity and Evolution within an Enigmatic Phylum

    Get PDF
    Arrow worms (Phylum Chaetognatha) are abundant planktonic organisms and important predators in many food webs; yet, the classification and evolutionary relationships among chaetognath species remain poorly understood. A seemingly simple body plan is underlain by subtle variation in morphological details, obscuring the affinities of species within the phylum. Many species achieve near global distributions, spanning the same latitudinal bands in all ocean basins, while others present disjunct ranges, in some cases with the same species apparently found at both poles. To better understand how these complex evolutionary and geographic variables are reflected in the species makeup of chaetognaths, we analyze DNA barcodes of the mitochondrial cytochrome oxidase c subunit I (COI) gene, from 52 specimens of 14 species of chaetognaths collected mainly from the Atlantic Ocean. Barcoding analysis was highly successful at discriminating described species of chaetognaths across the phylum, and revealed little geographical structure. This barcode analysis reveals hitherto unseen genetic variation among species of arrow worms, and provides insight into some species relationships of this enigmatic group

    Acoel Flatworms Are Not Platyhelminthes: Evidence from Phylogenomics

    Get PDF
    Acoel flatworms are small marine worms traditionally considered to belong to the phylum Platyhelminthes. However, molecular phylogenetic analyses suggest that acoels are not members of Platyhelminthes, but are rather extant members of the earliest diverging Bilateria. This result has been called into question, under suspicions of a long branch attraction (LBA) artefact. Here we re-examine this problem through a phylogenomic approach using 68 different protein-coding genes from the acoel Convoluta pulchra and 51 metazoan species belonging to 15 different phyla. We employ a mixture model, named CAT, previously found to overcome LBA artefacts where classical models fail. Our results unequivocally show that acoels are not part of the classically defined Platyhelminthes, making the latter polyphyletic. Moreover, they indicate a deuterostome affinity for acoels, potentially as a sister group to all deuterostomes, to Xenoturbellida, to Ambulacraria, or even to chordates. However, the weak support found for most deuterostome nodes, together with the very fast evolutionary rate of the acoel Convoluta pulchra, call for more data from slowly evolving acoels (or from its sister-group, the Nemertodermatida) to solve this challenging phylogenetic problem

    Group II Introns Break New Boundaries: Presence in a Bilaterian's Genome

    Get PDF
    Group II introns are ribozymes, removing themselves from their primary transcripts, as well as mobile genetic elements, transposing via an RNA intermediate, and are thought to be the ancestors of spliceosomal introns. Although common in bacteria and most eukaryotic organelles, they have never been reported in any bilaterian animal genome, organellar or nuclear. Here we report the first group II intron found in the mitochondrial genome of a bilaterian worm. This location is especially surprising, since animal mitochondrial genomes are generally distinct from those of plants, fungi, and protists by being small and compact, and so are viewed as being highly streamlined, perhaps as a result of strong selective pressures for fast replication while establishing germ plasm during early development. This intron is found in the mtDNA of an annelid worm, (an undescribed species of Nephtys), where the complete sequence revealed a 1819 bp group II intron inside the cox1 gene. We infer that this intron is the result of a recent horizontal gene transfer event from a viral or bacterial vector into the mitochondrial genome of Nephtys sp. Our findings hold implications for understanding mechanisms, constraints, and selective pressures that account for patterns of animal mitochondrial genome evolutio
    corecore