124 research outputs found
Parametric Self-Oscillation via Resonantly Enhanced Multiwave Mixing
We demonstrate an efficient nonlinear process in which Stokes and anti-Stokes
components are generated spontaneously in a Raman-like, near resonant media
driven by low power counter-propagating fields. Oscillation of this kind does
not require optical cavity and can be viewed as a spontaneous formation of
atomic coherence grating
Quantum interference in the fluorescence of a molecular system
It has been observed experimentally [H.R. Xia, C.Y. Ye, and S.Y. Zhu, Phys.
Rev. Lett. {\bf 77}, 1032 (1996)] that quantum interference between two
molecular transitions can lead to a suppression or enhancement of spontaneous
emission. This is manifested in the fluorescent intensity as a function of the
detuning of the driving field from the two-photon resonance condition. Here we
present a theory which explains the observed variation of the number of peaks
with the mutual polarization of the molecular transition dipole moments. Using
master equation techniques we calculate analytically as well as numerically the
steady-state fluorescence, and find that the number of peaks depends on the
excitation process. If the molecule is driven to the upper levels by a
two-photon process, the fluorescent intensity consists of two peaks regardless
of the mutual polarization of the transition dipole moments. If the excitation
process is composed of both a two-step one-photon process and a one-step,
two-photon process, then there are two peaks on transitions with parallel
dipole moments and three peaks on transitions with antiparallel dipole moments.
This latter case is in excellent agreement with the experiment.Comment: 11 pages, including 8 figure
Gain Components in Autler-Townes Doublet from Quantum Interferences in Decay Channels
We consider non-degenerate pump-probe spectroscopy of V-systems under
conditions such that interference among decay channels is important. We
demonstrate how this interference can result in new gain features instead of
the usual absorption features. We relate this gain to the existence of a new
vacuum induced quasi-trapped-state. We further show how this also results in
large refractive index with low absorption.Comment: Total 8 pages, 6 figures, submitted to Physical Review
Interacting Dark Resonances: Interference Effects Induced by Coherently Altered Quantum Superpositions
We predict the possibility of sharp, high-contrast resonances in the optical
response of a broad class of systems, wherein interference effects are
generated by coherent perturbation or interaction of dark states. The
properties of these resonances can be manipulated to design a desired atomic
response.Comment: 4 pages, 3 figures, RevTeX, submitted to PRL; changed three numbers
in Fig. 3 (caption
Interference-induced gain in Autler-Townes doublet of a V-type atom in a cavity
We study the Autler-Townes spectrum of a V-type atom coupled to a
single-mode, frequency-tunable cavity field at finite termperature, with a
pre-selected polarization in the bad cavity limit, and show that, when the mean
number of thermal photons and the excited sublevel splitting is very
large (the same order as the cavity linewidth), the probe gain may occur at
either sideband of the doublet, depending on the cavity frequency, due to the
cavity-induced interference.Comment: Minor changes are mad
Narrowing of EIT resonance in a Doppler Broadened Medium
We derive an analytic expression for the linewidth of EIT resonance in a
Doppler broadened system. It is shown here that for relatively low intensity of
the driving field the EIT linewidth is proportional to the square root of
intensity and is independent of the Doppler width, similar to the laser induced
line narrowing effect by Feld and Javan. In the limit of high intensity we
recover the usual power broadening case where EIT linewidth is proportional to
the intensity and inversely proportional to the Doppler width.Comment: 4 pages, 2 figure
Slow Light Propagation in a Thin Optical Fiber via Electromagnetically Induced Transparency
We propose a novel configuration that utilizes electromagnetically induced
transparency (EIT) to tailor a fiber mode propagating inside a thin optical
fiber and coherently control its dispersion properties to drastically reduce
the group velocity of the fiber mode. The key to this proposal is: the
evanescent-like field of the thin fiber strongly couples with the surrounding
active medium, so that the EIT condition is met by the medium. We show how the
properties of the fiber mode is modified due to the EIT medium, both
numerically and analytically. We demonstrate that the group velocity of the new
modified fiber mode can be drastically reduced (approximately 44 m/sec) using
the coherently prepared orthohydrogen doped in a matrix of parahydrogen crystal
as the EIT medium.Comment: 10 pages in two column RevTex4, 6 Figure
Transparency induced via decay interference
Published versio
Electromagnetically induced transparency with a standing-wave drive in the frequency up-conversion regime
We study electromagnetically induced transparency for a probe traveling-wave (TW) laser field in closed Doppler-broadened three-level systems driven by a standing-wave (SW) laser field of moderate intensity (its Rabi frequencies are smaller than the Doppler width of the driven transition). We show that probe windows of transparency occur for values of the probe to drive field frequency ratio R close to half-integer values. For optical transitions and typical values of Doppler broadening for atoms in a vapor cell, we show that for R>1 a SW drive field is appreciably more efficient than a TW drive in inducing probe transparency. As examples, we consider parameters for real cascade schemes in barium atoms with R≈1.5 and in beryllium atoms with R≈3.5 showing that probe transmission values well above 50% are possible for conditions in which it is almost negligible either without driving field or with only one of the TW components of the drive. We show that a strongly asymmetric drive having two TW components with unequal intensities is even more eficient than a symmetric SW drive in inducing probe transparency. The case of arbitrary probe intensity is also considered
Observation of absorptive photon switching by quantum interference
We report an experimental demonstration of photon switching by quantum
interference in a four-level atomic system proposed by Harris and Yamamoto
(Phys. Rev. Lett. 81, 3611 (1998)). Quantum interference inhibits single-photon
absorption but enhances third-order, two-photon type absorption in the
four-level system. We have observed greatly enhanced nonlinear absorption in
the four-level system realized with cold 87Rb atoms and demonstrated fast
switching of the nonlinear absorption with a pulsed pump laser.Comment: 12 pages, 4 figure
- …