1,043 research outputs found

    Using in situ GC-MS for analysis of C-2-C-7 volatile organic acids in ambient air of a boreal forest site

    Get PDF
    An in situ method for studying gas-phase C-2-C-7 monocarboxylic volatile organic acids (VOAs) in ambient air was developed and evaluated. Samples were collected directly into the cold trap of the thermal desorption unit (TD) and analysed in situ using a gas chromatograph (GC) coupled to a mass spectrometer (MS). A polyethylene glycol column was used for separating the acids. The method was validated in the laboratory and tested on the ambient air of a boreal forest in June 2015. Recoveries of VOAs from fluorinated ethylene propylene (FEP) and heated stainless steel inlets ranged from 83 to 123 %. Different VOAs were fully desorbed from the cold trap and well separated in the chromatograms. Detection limits varied between 1 and 130 pptv and total uncertainty of the method at mean ambient mixing ratios was between 16 and 76 %. All straight chain VOAs except heptanoic acid in the ambient air measurements were found with mixing ratios above the detection limits. The highest mixing ratios were found for acetic acid and the highest relative variations for hexanoic acid. In addition, mixing ratios of acetic and propanoic acids measured by the novel GC-MS method were compared with proton-mass-transfer time-off-light mass spectrometer (PTR-TOFMS) data. Both instruments showed similar variations, but differences in the mixing ratio levels were significant.Peer reviewe

    Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    Get PDF
    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement HH(98,y2) 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.European Commission (EUROfusion 633053

    Sesquiterpenes dominate monoterpenes in northern wetland emissions

    Get PDF
    We have studied biogenic volatile organic compound (BVOC) emissions and their ambient concentrations at a sub-Arctic wetland (Lompolojankka, Finland), which is an open, nutrient-rich sedge fen and a part of the Pallas-Sodankyla Global Atmosphere Watch (GAW) station. Measurements were conducted during the growing season in 2018 using an in situ thermal-desorption-gaschromatograph-mass-spectrometer (TD-GC-MS). Earlier studies have shown that isoprene is emitted from boreal wetlands, and it also turned out to be the most abundant compound in the current study. Monoterpene (MT) emissions were generally less than 10 % of the isoprene emissions (mean isoprene emission over the growing season, 44 mu g M-2 h(-1)), but sesquiterpene (SQT) emissions were higher than MT emissions all the time. The main MTs emitted were alpha-pinene, 1,8-cineol, myrcene, limonene and 3 Delta-carene. Of SQTs cadinene, beta-cadinene and alpha-farnesene had the major contribution. During early growing season the SQT/MT emission rate ratio was similar to 10, but it became smaller as summer proceeded, being only similar to 3 in July. Isoprene, MT and SQT emissions were exponentially dependent on temperature (correlation coefficients (R-2) 0.75, 0.66 and 0.52, respectively). Isoprene emission rates were also found to be exponentially correlated with the gross primary production of CO2 (R-2 = 0.85 in July). Even with the higher emissions from the wetland, ambient air concentrations of isoprene were on average > 100, > 10 and > 6 times lower than MT concentrations in May, June and July, respectively. This indicates that wetland was not the only source affecting atmospheric concentrations at the site, but surrounding coniferous forests, which are high MT emitters, contribute as well. Daily mean MT concentrations had high negative exponential correlation (R-2 = 0.96) with daily mean ozone concentrations indicating that vegetation emissions can be a significant chemical sink of ozone in this sub-Arctic area.Peer reviewe

    Sesquiterpenes and oxygenated sesquiterpenes dominate the VOC (C-5-C-20) emissions of downy birches

    Get PDF
    Biogenic volatile organic compounds (BVOCs) emitted by the forests are known to have strong impacts in the atmosphere. However, lots of missing reactivity is found, especially in the forest air. Therefore better characterization of sources and identification/quantification of unknown reactive compounds is needed. While isoprene and monoterpene (MT) emissions of boreal needle trees have been studied quite intensively, there is much less knowledge on the emissions of boreal deciduous trees and emissions of larger terpenes and oxygenated volatile organic compounds (OVOCs). Here we quantified the downy birch (Betula pubescens) leaf emissions of terpenes, oxygenated terpenes and green leaf volatiles (GLVs) at the SMEAR II boreal forest site using in situ gas chromatographs with mass spectrometers. Sesquiterpenes (SQTs) and oxygenated sesquiterpenes (OSQTs) were the main emitted compounds. Mean emission rates of SQTs and OSQTs were significantly higher in the early growing season (510 and 650 ng g(dw)(-1) h(-1), respectively) compared to in the main (40 and 130 ng g(dw)(-1) h(-1), respectively) and late (14 and 46 ng g(dw)(-1) h(-1), respectively) periods, indicating that early leaf growth is a strong source of these compounds. The emissions had a very clear diurnal variation with afternoon maxima being on average 4 to 8 times higher than seasonal means for SQTs and OSQTs, respectively. fi Caryophyllene and fi-farnesene were the main SQTs emitted. The main emitted OSQTs were tentatively identified as 14-hydroxy-beta-caryophyllene acetate (M = 262 g mol(-1)) and 6-hydroxy-beta-caryophyllene (M D 220 g mol(-1)). Over the whole growing season, the total MT emissions were only 24% and 17% of the total SQT and OSQT emissions, respectively. A stressed tree growing in a pot was also studied, and high emissions of ff -farnesene and an unidentified SQT were detected together with high emissions of GLVs. Due to the relatively low volatility and the high reactivity of SQTs and OSQTs, downy birch emissions are expected to have strong impacts on atmospheric chemistry, especially on secondary organic aerosol (SOA) production.Peer reviewe

    Terpenoid and carbonyl emissions from Norway spruce in Finland during the growing season

    Get PDF
    We present spring and summer volatile organic compound (VOC) emission rate measurements from Norway spruce (Picea abies L. Karst) growing in a boreal forest in southern Finland. The measurements were conducted using in situ gas chromatograph with 1 to 2 h time resolution to reveal quantitative and qualitative short-term and seasonal variability of the emissions. The measurements cover altogether 14 weeks in years 2011, 2014 and 2015. Monoterpene (MT) and sesquiterpene (SQT) emission rates were measured all the time, but isoprene only in 2014 and 2015 and acetone and C-4-C-10 aldehydes only in 2015. The emission rates of all the compounds were low in spring, but MT, acetone, and C-4-C-10 aldehyde emission rates increased as summer proceeded, reaching maximum emission rates in July. Late summer mean values (late July and August) were 29, 17, and 33 ng g(dw)(-1) h(-1) for MTs, acetone, and aldehydes respectively. SQT emission rates increased during the summer and highest emissions were measured in late summer (late summer mean value 84 ng g(dw)(-1) h(-1)) concomitant with highest linalool emissions most likely due to stress effects. The between-tree variability of emission pattern was studied by measuring seven different trees during the same afternoon using adsorbent tubes. Especially the contributions of limonene, terpinolene, and camphene were found to vary between trees, whereas proportions of alpha-pinene (25 +/- 5 %) and beta-pinene (7 +/- 3 %) were more stable. Our results show that it is important to measure emissions at canopy level due to irregular emission pattern, but reliable SQT emission data can be measured only from enclosures. SQT emissions contributed more than 90% of the ozone reactivity most of the time, and about 70% of the OH reactivity during late summer. The contribution of aldehydes to OH reactivity was comparable to that of MT during late summer, 10-30% most of the time.Peer reviewe

    Long-term measurements of volatile organic compounds highlight the importance of sesquiterpenes for the atmospheric chemistry of a boreal forest

    Get PDF
    The concentrations of terpenoids (isoprene; monoterpenes, MTs; and sesquiterpenes, SQTs) and oxygenated volatile organic compounds (OVOCs; i.e. aldehydes, alcohols, acetates and volatile organic acids, VOAs) were investigated during 2 years at a boreal forest site in Hyytiala, Finland, using in situ gas chromatograph mass spectrometers (GC-MSs). Seasonal and diurnal variations of terpenoid and OVOC concentrations as well as their relationship with meteorological factors were studied. Of the VOCs examined, C-2-C-7 unbranched VOAs showed the highest concentrations, mainly due to their low reactivity. Of the terpenoids, MTs showed the highest concentrations at the site, but seven different highly reactive SQTs were also detected. The monthly and daily mean concentrations of most terpenoids, aldehydes and VOAs were highly dependent on the temperature. The highest exponential correlation with temperature was found for a SQT (beta-caryophyllene) in summer. The diurnal variations in the concentrations could be explained by sources, sinks and vertical mixing. The diurnal variations in MT concentrations were strongly affected by vertical mixing. Based on the temperature correlations and mixing layer height (MLH), simple proxies were developed for estimating the MT and SQT concentrations. To estimate the importance of different compound groups and compounds in local atmospheric chemistry, reactivity with main oxidants (hydroxyl radical, OH; nitrate radical, NO3; and ozone, O-3) and production rates of oxidation products (OxPRs) were calculated. The MTs dominated OH and NO3 radical chemistry, but the SQTs greatly impacted O-3 chemistry, even though the concentrations of SQT were 30 times lower than the MT concentrations. SQTs were also the most important for the production of oxidation products. Since the SQTs show high secondary organic aerosol (SOA) yields, the results clearly indicate the importance of SQTs for local SOA production.Peer reviewe

    LIBS applicability for investigation of re-deposition and fuel retention in tungsten coatings exposed to pure and nitrogen-mixed deuterium plasmas of Magnum-PSI

    Get PDF
    We have investigated the applicability of Laser Induced Breakdown Spectroscopy (LIBS) for analyzing the changes in the composition and fuel retention of W and W-Ta coatings following exposure to D2 or mixed D2-N2 plasma beams in the linear plasma device Magnum PSI. The exposed samples were characterized by in situ ns-LIBS and complementary analysis methods Secondary Ion Mass Spectroscopy, Energy Dispersive x-ray spectroscopy and Nuclear Reaction Analysis. In agreement with the used complementary analysis methods, LIBS revealed the formation of up to 400 nm thick co-deposited surface layer in the central region of the coatings which contained a higher concentration of the main plasma impurities, such as N, and metals, such as Ta and Mo, the latter originating mainly from the substrate and from the plasma source. The deuterium retention on the other hand was highest outside from the central region of the coatings.</p

    Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    Get PDF
    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol, which affect human health, crop production and regional climate. Measurements of aromatic hydrocarbons were conducted at the Welgegund measurement station (South Africa), which is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg–Pretoria metropolitan conurbation (> 10 million people), the Vaal Triangle (e.g. petrochemical and pyrometallurgical industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anticyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for 1 year. Samples were collected twice a week for 2 h during daytime and 2 h during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass selective detector was used for sample preparation and analysis. Results indicated that the monthly median (mean) total aromatic hydrocarbon concentrations ranged between 0.01 (0.011) and 3.1 (3.2) ppb. Benzene levels did not exceed the local air quality standard limit, i.e. annual mean of 1.6 ppb. Toluene was the most abundant compound, with an annual median (mean) concentration of 0.63 (0.89) ppb. No statistically significant differences in the concentrations measured during daytime and night-time were found, and no distinct seasonal patterns were observed. Air mass back trajectory analysis indicated that the lack of seasonal cycles could be attributed to patterns determining the origin of the air masses sampled. Aromatic hydrocarbon concentrations were in general significantly higher in air masses that passed over anthropogenically impacted regions. Inter-compound correlations and ratios gave some indications of the possible sources of the different aromatic hydrocarbons in the source regions defined in the paper. The highest contribution of aromatic hydrocarbon concentrations to ozone formation potential was also observed in plumes passing over anthropogenically impacted regions

    Raman microscopy to characterize plasma-wall interaction materials: from carbon era to metallic walls

    Get PDF
    Plasma-wall interaction in magnetic fusion devices is responsible for wall changes and plasma pollution with major safety issues. It is investigated both in situ and ex situ, especially by realizing large scale dedicated post-mortem campaigns. Selected parts of the walls are extracted and characterized by several techniques. It is important to extract hydrogen isotopes, oxygen or other element content. This is classically done by ion beam analysis and thermal desorption spectroscopy. Raman microscopy is an alternative and complementary technique. The aim of this work is to demonstrate that Raman microscopy is a very sensitive tool. Moreover, if coupled to other techniques and tested on well-controlled reference samples, Raman microscopy can be used efficiently for characterization of wall samples. Present work reviews long experience gained on carbon-based materials demonstrating how Raman microscopy can be related to structural disorder and hydrogen retention, as it is a direct probe of chemical bonds and atomic structure. In particular, we highlight the fact that Raman microscopy can be used to estimate the hydrogen content and bonds to other elements as well as how it evolves under heating. We also present state-of-the-art Raman analyses of beryllium- and tungsten-based materials, and finally, we draw some perspectives regarding boron-based deposits.</p
    corecore