800 research outputs found

    A review of recent perspectives on biomechanical risk factors associated with anterior cruciate ligament injury

    Get PDF
    There is considerable evidence to support a number of biomechanical risk factors associated with non-contact anterior cruciate ligament (ACL) injury. This paper aimed to review these biomechanical risk factors and highlight future directions relating to them. Current perspectives investigating trunk position and relationships between strength, muscle activity and biomechanics during landing/cutting highlight the importance of increasing hamstring muscle force during dynamic movements through altering strength, muscle activity, muscle length and contraction velocity. In particular, increased trunk flexion during landing/cutting and greater hamstring strength are likely to increase hamstring muscle force during landing and cutting which have been associated with reduced ACL injury risk. Decision making has also been shown to influence landing biomechanics and should be considered when designing tasks to assess landing/cutting biomechanics. Coaches should therefore promote hamstring strength training and active trunk flexion during landing and cutting in an attempt to reduce ACL injury risk.Peer reviewe

    Effect of combined uphill-downhill sprint training on kinematics and maximum running speed in experienced sprinters

    Get PDF
    This study examined the effects of sprint running training on sloping surfaces (3°) in experienced sprinters using selected kinematic variables. Twelve experienced sprinters were randomly allocated to two training groups (combined uphill–downhill and horizontal). Pre- and post-training tests were performed to examine the effects of six weeks of training on maximum running speed, step rate, step length, step time, contact time, braking and propulsive phase of contact time, flight time and selected postural characteristics during a step cycle in the final steps of a 35m sprint test. In the combined uphill–downhill training group, maximum running speed was substantially greater (from 9.08 ± 0.90 m s-1 to 9.51 ± 0.62 m s-1; p <0.05) after training by 4.8%; step rate, contact time, step time and concentric phase was not modified. There were no significant changes in maximal speed or sprint kinematics in the horizontal training group. Overall, the posture characteristics did not change with training. The combined uphill–downhill training method was substantially more effective in improving the maximum running speed in experienced sprinters than a traditional horizontal training method

    Mechanical properties and formation mechanisms of a wire of single gold atoms

    Get PDF
    A scanning tunneling microscope (STM) supplemented with a force sensor is used to study the mechanical properties of a novel metallic nanostructure: a freely suspended chain of single gold atoms. We find that the bond strength of the nanowire is about twice that of a bulk metallic bond. We perform ab initio calculations of the force at chain fracture and compare quantitatively with experimental measurements. The observed mechanical failure and nanoelastic processes involved during atomic wire fabrication are investigated using molecular dynamics (MD) simulations, and we find that the total effective stiffness of the nanostructure is strongly affected by the detailed local atomic arrangement at the chain bases.Comment: To be published in Phys. Rev. Lett. 4 pages with 3 figure

    Effects of an active warm-up on variation in bench press and back squat (upper and lower body measures).

    Get PDF
    The present study investigated the magnitude of diurnal variation in back squat and bench press using the MuscleLab linear encoder over three different loads and assessed the benefit of an active warm-up to establish whether diurnal variation could be negated. Ten resistance-trained males underwent (mean ± SD: age 21.0 ± 1.3 years, height 1.77 ± 0.06 m, and body mass 82.8 ± 14.9 kg) three sessions. These included control morning (M, 07:30 h) and evening (E, 17:30 h) sessions (5-min standardized warm-up at 150 W, on a cycle ergometer), and one further session consisting of an extended active warm-up morning trial (ME, 07:30 h) until rectal temperature (Trec) reached previously recorded resting evening levels (at 150 W, on a cycle ergometer). All sessions included handgrip, followed by a defined program of bench press (at 20, 40, and 60 kg) and back squat (at 30, 50, and 70 kg) exercises. A linear encoder was attached to an Olympic bar used for the exercises and average force (AF), peak velocity (PV), and time to peak velocity (tPV) were measured (MuscleLab software; MuscleLab Technology, Langesund, Norway) during the concentric phase of the movements. Values for Trec were higher in the E session compared to values in the M session (Δ0.53 °C, P  0.05) to increase from M to E levels. Therefore, MuscleLab linear encoder could detect meaningful differences between the morning and evening for all variables. However, the diurnal variation in bench press and back squat (measures of lower and upper body force and power output) is not explained by time-of-day oscillations in Trec

    The Role of Phytoplankton Dynamics in the Seasonal and Interannual Variability of Carbon in the Subpolar North Atlantic - a Modeling Study

    Get PDF
    We developed an ecosystem/biogeochemical model system, which includes multiple phytoplankton functional groups and carbon cycle dynamics, and applied it to investigate physical-biological interactions in Icelandic waters. Satellite and in situ data were used to evaluate the model. Surface seasonal cycle amplitudes and biases of key parameters (DIC, TA, pCO2, air-sea CO2 flux, and nutrients) are significantly improved when compared to surface observations by prescribing deep water values and trends, based on available data. The seasonality of the coccolithophore and "other phytoplankton" (diatoms and dinoflagellates) blooms is in general agreement with satellite ocean color products. Nutrient supply, biomass and calcite concentrations are modulated by light and mixed layer depth seasonal cycles. Diatoms are the most abundant phytoplankton, with a large bloom in early spring and a secondary bloom in fall. The diatom bloom is followed by blooms of dinoflagellates and coccolithophores. The effect of biological changes on the seasonal variability of the surface ocean pCO2 is nearly twice the temperature effect, in agreement with previous studies. The inclusion of multiple phytoplankton functional groups in the model played a major role in the accurate representation of CO2 uptake by biology. For instance, at the peak of the bloom, the exclusion of coccolithophores causes an increase in alkalinity of up to 4 mol kg(sup 1) with a corresponding increase in DIC of up to 16 mol kg(sup 1). During the peak of the bloom in summer, the net effect of the absence of the coccolithophores bloom is an increase in pCO2 of more than 20 atm and a reduction of atmospheric CO2 uptake of more than 6 mmolm(sup 2) d(sup 1). On average, the impact of coccolithophores is an increase of air-sea CO2 flux of about 27 %. Considering the areal extent of the bloom from satellite images within the Irminger and Icelandic Basins, this reduction translates into an annual mean of nearly 1500 tonnes C yr(sup 1)

    Density functional method for nonequilibrium electron transport

    Get PDF
    We describe an ab initio method for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density functional theory (DFT) as implemented in the well tested Siesta approach (which uses non-local norm-conserving pseudopotentials to describe the effect of the core electrons, and linear combination of finite-range numerical atomic orbitals to describe the valence states). We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including selfconsistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. We relate the nonequilibrium Green's function expressions to the more transparent scheme involving the scattering states. As an illustration, the method is applied to three systems where we are able to compare our results to earlier ab initio DFT calculations or experiments, and we point out differences between this method and existing schemes. The systems considered are: (1) single atom carbon wires connected to aluminum electrodes with extended or finite cross section, (2) single atom gold wires, and finally (3) large carbon nanotube systems with point defects.Comment: 18 pages, 23 figure

    Uncertainty in maritime risk analysis: Extended case study on chemical tanker collisions

    Get PDF
    Uncertainty is inherent to risk analysis. Therefore, it is extremely important to properly address the issue of uncertainty. In the field of risk analysis for maritime transportation systems, the effect of uncertainty is rarely discussed or quantified. For this reason, this article discusses a case study dealing with risk analysis for a chemical spill in the Gulf of Finland and analyses the related uncertainties by adopting a systematic framework. Risk is assessed in terms of the expected spill frequency and spill volumes caused by collisions between ships and chemical tankers in the Gulf of Finland. This is done by applying a collision consequence with a novel approach-to-collision-speed linkage model and Gulf of Finland-specific causation factors, which are based on reanalysing accident data. This article also presents a metamodel for assessing collision probability with initial vessel speeds for any given scenario where a chemical tanker is about to be struck by another vessel. Even when conducting a risk analysis using state-of-the-art methods, there is still a medium-high degree of uncertainty in the model presented in this article, which only becomes apparent when conducting a systematic uncertainty assessment analysis. However, an uncertainty assessment is an important part of quantitative maritime risk analysis. For this purpose, a qualitative framework for uncertainty assessment analysis is introduced for general use in the field of maritime risk analysis.</p

    Greenland Ice Sheet Melt from MODIS and Associated Atmospheric Variability

    Get PDF
    Daily June-July melt fraction variations over the Greenland Ice Sheet (GIS) derived from the MODerate-resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500hPa height (from NCEPNCAR). Blocking activity with a range of time scales, from synoptic waves breaking poleward ( 5 days) to full-fledged blocks (5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the largest MODIS melt years (2002 and 2012), the area-average temperature anomaly of 2 standard deviations above the 14-year June-July mean, results in a melt fraction of 40 or more. Summer 2007 had the most blocking days, however atmospheric temperature anomalies were too small to instigate extreme melting
    • …
    corecore