9 research outputs found

    Hyperfine Paschen-Back regime realized in Rb nanocell

    Full text link
    A simple and efficient scheme based on one-dimensional nanometric thin cell filled with Rb and strong permanent ring magnets allowed direct observation of hyperfine Paschen-Back regime on D1 line in 0.5 - 0.7 T magnetic field. Experimental results are perfectly consistent with the theory. In particular, with sigma+ laser excitation, the slopes of B-field dependence of frequency shift for all the 10 individual transitions of 85,87Rb are the same and equal to 18.6 MHz/mT. Possible applications for magnetometry with submicron spatial resolution and tunable atomic frequency references are discussed.Comment: 3 page

    Magnetic field--induced modification of selection rules for Rb D2_2 line monitored by selective reflection from a vapor nanocell

    Full text link
    Magnetic field-induced giant modification of the probabilities of five transitions of 5S1/2,Fg=2→5P3/2,Fe=45S_{1/2}, F_g=2 \rightarrow 5P_{3/2}, F_e=4 of 85^{85}Rb and three transitions of 5S1/2,Fg=1→5P3/2,Fe=35S_{1/2}, F_g=1 \rightarrow 5P_{3/2}, F_e=3 of 87^{87}Rb forbidden by selection rules for zero magnetic field has been observed experimentally and described theoretically for the first time. For the case of excitation with circularly-polarized (σ+\sigma^+) laser radiation, the probability of Fg=2, mF=−2→Fe=4, mF=−1F_g=2, ~m_F=-2 \rightarrow F_e=4, ~m_F=-1 transition becomes the largest among the seventeen transitions of 85^{85}Rb Fg=2→Fe=1,2,3,4F_g=2 \rightarrow F_e=1,2,3,4 group, and the probability of Fg=1, mF=−1→Fe=3, mF=0F_g=1,~m_F=-1 \rightarrow F_e=3,~m_F=0 transition becomes the largest among the nine transitions of 87^{87}Rb Fg=1→Fe=0,1,2,3F_g=1 \rightarrow F_e=0,1,2,3 group, in a wide range of magnetic field 200 -- 1000 G. Complete frequency separation of individual Zeeman components was obtained by implementation of derivative selective reflection technique with a 300 nm-thick nanocell filled with Rb, allowing formation of narrow optical resonances. Possible applications are addressed. The theoretical model is perfectly consistent with the experimental results.Comment: 6 pages, 5 figure

    Essential features of optical processes in neon-buffered submicron-thin Rb vapor cell

    No full text
    International audienceA new submicron thin cell (STC) filled with Rb and neon gas is developed and comparison of resonant absorption with STC containing pure Rb is provided. The effect of collapse and revival of Dicke-type narrowing is still observable for the thickness L = λ /2 and L = λ , where λ is a resonant laser wavelength 794 nm (D1 line). For an ordinary Rb cm-size cell with addition of buffer gas, the velocity selective optical pumping/saturation (VSOP) resonances in saturated absorption spectra are fully suppressed if neon pressure > 0.5 Torr. A spectacular difference is that for L = λ , VSOP resonances are still observable even when neon pressure is ≥ 6 Torr. Narrow fluorescence spectra at L = λ /2 allow one to realize online buffer gas pressure monitoring. A good agreement with theoretical model is observed
    corecore