47 research outputs found

    Knowledge-based segmentation of SAR data with learned priors

    Get PDF
    ©2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/83.821747An approach for the segmentation of still and video synthetic aperture radar (SAR) images is described in this note. A priori knowledge about the objects present in the image, e.g., target, shadow, and background terrain, is introduced via Bayes' rule. Posterior probabilities obtained in this way are then anisotropically smoothed, and the image segmentation is obtained via MAP classifications of the smoothed data. When segmenting sequences of images, the smoothed posterior probabilities of past frames are used to learn the prior distributions in the succeeding frame. We show with examples from public data sets that this method provides an efficient and fast technique for addressing the segmentation of SAR data

    An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.896637Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The 2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods

    On the Laplace–Beltrami Operator and Brain Surface Flattening

    Get PDF
    ©1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/42.796283In this paper, using certain conformal mappings from uniformization theory, the authors give an explicit method for flattening the brain surface in a way which preserves angles. From a triangulated surface representation of the cortex, the authors indicate how the procedure may be implemented using finite elements. Further, they show how the geometry of the brain surface may be studied using this approach

    Image Morphing Based on Mutual Information and Optimal Mass Transport

    Get PDF
    ©2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/ICIP.2004.1421393Time domain image interpolation, or image morphing, refers to a class of techniques for generating a series of smoothly changing intermediate images between two given related images. In this note, we present a novel approach based on the theory of optimal mass transport, using mutual information (MI) as the similarity measurement. The potential applications also include image registration, compression and coding

    Flattening Maps for the Visualization of Multibranched Vessels

    Get PDF
    ©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TMI.2004.839368In this paper, we present two novel algorithms which produce flattened visualizations of branched physiological surfaces, such as vessels. The first approach is a conformal mapping algorithm based on the minimization of two Dirichlet functionals. From a triangulated representation of vessel surfaces, we show how the algorithm can be implemented using a finite element technique. The second method is an algorithm which adjusts the conformal mapping to produce a flattened representation of the original surface while preserving areas. This approach employs the theory of optimal mass transport. Furthermore, a new way of extracting center lines for vessel fly-throughs is provided

    Optimal Mass Transport and Image Registration

    Get PDF
    ©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.Presented at the IEEE Workshop on Variational and Level Set Methods (VLSM'01) July 13, 2001, Vancouver, Canada.DOI: 10.1109/VLSM.2001.938878Image registration is the process of establishing a common geometric reference frame between two or more data sets from the same or different imaging modalities possibly taken at different times. In the context of medical imaging and in particular image guided therapy, the registration problem consists of finding automated methods that align multiple data sets with each other and with the patient. In this paper we propose a method of elastic registration based on the Monge-Kantorovich problem of optimal mass transport

    Mass-Preserving Maps for Registration and Visual Tracking

    Get PDF
    ©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/.2001.980968Presented at the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, December 2001.We consider a new method for an important aspect of the visual tracking problem. Tracking in the presence of a disturbance is a classical control issue, but because of the highly uncertain nature of the disturbance, this type of problem is very difficult. A key issue in many visual tracking tasks is that of registration. Image registration is the process of establishing a common geometric reference frame among several data sets taken at different times. In this paper, we propose a method of registration based on the Monge-Kantorovich problem of optimal mass transport. We argue that such an approach can also be very useful for several problems in controlled active vision

    Nondistorting Flattening Maps and the 3D Visualization of Colon CT Images

    No full text
    In this paper, we consider a novel 3D visualization technique based on surface flattening for virtual colonoscopy. Such visualization methods could be important in virtual colonoscopy since they have the potential for non-invasively determining the presence of polyps and other pathologies. Further, we demonstrate a method which presents a surface scan of the entire colon as a cine, and affords viewer the opportunity to examine each point on the surface without distortion. We use certain angle-preserving mappings from differential geometry in order to derive an explicit method for flattening surfaces obtained from 3D colon CT imagery. Indeed, we describe a general method based on a discretization of the Laplace-Beltrami operator for flattening a surface onto the plane in a manner which preserves the local geometry. From a triangulated surface representation of the colon, we indicate how the procedure may be implemented using a finite element technique, which takes into acc..

    Optimal Mass Transport for Registration and Warping

    No full text
    Image registration is the process of establishing a common geometric reference frame between two or more image data sets possibly taken at different times. In this paper we present a method for computing elastic registration and warping maps based on the Monge--Kantorovich theory of optimal mass transport. This mass transport method has a number of important characteristics. First, it is parameter free. Moreover, it utilizes all of the grayscale data in both images, places the two images on equal footing and is symmetrical: the optimal mapping from image A to image B being the inverse of the optimal mapping from B to A. The method does not require that landmarks be specified, and the minimizer of the distance functional involved is unique; there are no other local minimizers. Finally, optimal transport naturally takes into account changes in density that result from changes in area or volume. Although the optimal transport method is certainly not appropriate for all registration and warping problems, this mass preservation property makes the Monge--Kantorovich approach quite useful for an interesting class of warping problems, as we show in this paper. Our method for finding the registration mapping is based on a partial differential equation approach to the minimization of the L Kantorovich--Wasserstein or "Earth Mover's Distance" under a mass preservation constraint. We show how this approach leads to practical algorithms, and demonstrate our method with a number of examples, including those from the medical field. We also extend this method to take into account changes in intensity, and show that it is well suited for applications such as image morphing
    corecore