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Knowledge-Based Segmentation of SAR Data with Learned
Priors

Steven Haker, Guillermo Sapiro, and Allen Tannenbaum

Abstract—An approach for the segmentation of still and video synthetic
aperture radar (SAR) images is described in this note. A priori knowledge
about the objects present in the image, e.g.,target, shadow, andbackground
terrain, is introduced via Bayes' rule. Posterior probabilities obtained in
this way are then anisotropically smoothed, and the image segmentation is
obtained via MAP classifications of the smoothed data. When segmenting
sequences of images, the smoothed posterior probabilities of past frames
are used to learn the prior distributions in the succeeding frame. We show
with examples from public data sets that this method provides an efficient
and fast technique for addressing the segmentation of SAR data.

Index Terms—Anisotropic diffusion, Bayes rule, knowledge, learning,
segmentation, synthetic aperture radar (SAR).

I. INTRODUCTION

In this note we present a method of segmenting synthetic aperture
radar (SAR) images. The segmentation of SAR data has received an
increasing amount of attention from the image processing community
in the past years; see for example [2], [3] and references therein.

The SAR images used in this note are part of a well-known public
data set provided jointly by DARPA and Wright Laboratory as part
of the Moving and Stationary Target Acquisition and Recognition
(MSTAR) program [8]. These are images of various military and
synthetic targets taken from an airborne platform at various angles.
Most of the images are 128 pixels square and are characterized by a
graininess that makes direct segmentation of the target difficult. As
we show below, the introduction of prior information about the image
significantly facilitates the segmentation process.

Since noise is in general nonadditive, anisotropic diffusion [4] and
related techniques directly applied to the image do not produce satis-
factory results. Our approach follows the technique of [6], [7], origi-
nally developed for MRI segmentation, and combines Bayes' rule with
anisotropic diffusion, introducing a priori knowledge into the segmen-
tation process and also solving the nonadditivity problem of the noise.
We also extend this approach to the segmentation of video data, incor-
porating basic learning capabilities to the knowledge. The theoretical
background for this technique, and its relation with MRF and relax-
ation labeling is given in [7]. In general, this approach is more accurate
(it is based on PDE's and accurate numerical implementations), more
robust (uses robust diffusion operations), and faster (it is not a discrete
optimization problem) that those techniques.
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II. BASIC MODEL FORSTILL IMAGES

The model we employ begins with the assumption that the image is
composed ofn classes of objects. In this note we will assume three
classes, corresponding to the target, its shadow, and the background
terrain. The technique is general and can be applied to any number of
classes. The goal of our segmentation is to determine to which class
each pixel in each image belongs. Our basic model assumes that the
value of each pixel in a given class can be thought of as a random vari-
able with a known (or learned) distribution. For example, for the case of
pixel-independent normal distributions (see below for extensions), the
likelihood of a particular pixeli having a certain valuev given that it is
in classc 2 ftarget, shadow, backgroundg is Pr(Vi = v j Ci = c) =
1=(

p
2��c) exp(�1=2((v � �c)

2)=�2c ), wherei is an index ranging
over all pixels in the SAR image,Vi is the value of the pixel, andCi is
its class. As usual,�c and�c denote the mean and standard deviation
of classc; these are assumed known. In practice, these parameters are
estimated from a set of sample images, while more sophisticated tech-
niques like EM can be used.1 When segmenting sequences of images,
we have tried relaxing the assumption of normally distributed intensi-
ties. This is described below.

Next, we assume that there is some known prior probability that a
particular pixel will belong to a certain class. The theory is general,
and the prior can be as sophisticated as desired. For still images, we
assume in this note a homogeneous prior, i.e. , thatPr(Ci = c) is the
same over all spatial indicesi. It is, however, possible to incorporate a
priori knowledge about the image here, for example if it were known
that the target is more likely to be near the center of the image than near
the edge. We can also correlate between the priors of different classes,
e.g., the shadow is expected to surround the object. For sequences of
images, we have used a learned prior, as described below.

Given a set of intensity distributionsPr(Vi = v j Ci = c) and priors
Pr(Ci = c), we can apply Bayes' Rule from elementary probability
theory to calculate the posterior probability that a given pixel belongs
to a particular class, given its intensity:

Pr(Ci = c j Vi = v) =
Pr(Vi = v j Ci = c)Pr(Ci = c)

 Pr(Vi = v j Ci = )Pr(Ci = )
: (1)

Our proposed approach is to calculate the posteriorsP c
i := Pr(Ci =

c j Vi = v) using the given distributions and (1) above, and then
to apply anisotropic smoothing to eachP c (note that the denominator
is just a normalization constant that can be “ignored”). Specifically,
we have chosen to smooth by evolvingP c according to a discretized
version of the partial differential equation
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This equation defines the affine geometric heat flow, under which the
level sets ofP c undergo affine curve shortening. In other words, ifC
is a level-set ofP c, then

@C
@t

= �1=3 ~N

where� stands for the curvature and~N for the unit normal. The flow
(2) is basically smoothing the image in the direction of� ? rP c.

1Using very simple probability distributions for the likelihood and priors has
the advantage of making the algorithm very fast, and also helps to show its ro-
bustness (if we use sophisticated distributions, it is hard to know if the power is
in the algorithm or in the distributions).
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Fig. 1. Four examples of the segmentation algorithm for different SAR still images. The original images, smoothed posteriors, and segmentation results are
shown.

This particular diffusion equation was chosen because of its affine in-
variance, because it preserves edges well, and because of its numerical
stability and ease of computation. See [1], [5], for details and other ap-
plications of this filter. Once again, the technique is not limited to any
specific selection of the edge preserving filter (e.g., in [6], [7] the orig-
inal Perona-Malik flow is used for MRI).

The final segmentation is obtained using the maximuma posteriori
probability estimate after anisotropic smoothing. That is

C�

i = arg max
c2ftarget; shadow; backgroundg

Pr�(Ci = c j Vi = v) (3)

wherePr�(Ci = c j Vi = v) is the smoothed posterior probability.
Once again, more details on this technique, and its relation to other
approaches such as MRF and relaxation labeling, may be found in [6]
and [7].

III. EXTENSIONS TOVIDEO DATA

When segmenting sequences of images, we have extended the model
so that information from one frame is used in the segmentation of the
next one. By far the most effective way we have found to do this is
by modifying our assumption of homogeneous priors. In particular,
we have learned these priors. We have used the smoothed posteriors
P c from one frame as priorsPr(Ci = c) in the segmentation of the
next frame. We have also tested relaxing our assumption that the pixel
intensities are distributed according to fixed normal distributions. We
learned the distribution parameters of the normal distributions from
frame to frame by calculating new sample means and variances based
on the segmentation of earlier images. Finally, we completely removed
the assumption that the intensities are normally distributed. This was
done by learning the sample distribution of intensities within each class
as images were segmented, and then using this distribution asPr(Vi =
v j Ci = c).

Recapping, we can learn the distributions from previous frames in
the case of video data (or from examples in the case of still images).
The segmentation is still performed frame after frame, but with the
improved distributions.

IV. EXAMPLES

The Wright Laboratories' SAR image data is stored as 4-byte floating
point data in separate magnitude and phase blocks. Only the magnitude
block was used in our segmentation. The data was scaled to range be-
tween 0.0 and 255.0.

In order to get initial estimates for�c and�c, a few images were seg-
mented by hand (the algorithm can also incorporate automatic estima-
tion techniques in a straightforward fashion). Once areas of each image
were identified as either target, shadow, or background, the sample
mean and standard deviation of the values of the pixels in these areas
were calculated. These values were then used for�c and�c in the
normal distributions in this note. We found that a single set of values for
the parameters�c and�c worked well for many different targets and
viewing angles. The values used in the segmentations below were (for
still images)(�target; �shadow; �background) = (61:7; 1:6; 7:8) and
(�target; �shadow; �background) = (53:7; 0:8; 4:3). Next, values for
Pr(Ci = c)were chosen. We have found that the segmentation process
is quite robust with respect to these values. In fact,Pr(Ci = c) � 1=3
provided satisfactory results. However, when segmenting sequences of
images, significant gains in speed are possible through the use of adap-
tive priors, as described above.

To segment a singular image, the data was read and scaled. The
image itself was then smoothed directly by applying (2) for a small
number of iterations, typically three. Next, the posterior probabilities
were calculated using Bayes rule. The posterior probabilitiesP c were
then smoothed using (2) for a number of iterations. After each iteration,
the three probabilitiesP c were renormalized so that their sum was one.
Ten iterations was the average number required to produce a good re-
sult. Whenever (2) was applied, the maximum time step which ensures
numerical stability was used. The final step in the calculation was to
use (3) to determine the class of each pixel. The results were saved as
images so that they could be compared visually to the original. These
results are shown below in Fig. 1. For all of these segmentations, (2)
was applied three times to the original image and ten times to the pos-
terior probabilities.

To segment a sequence of images, the first frame in the sequence
was segmented as above. The smoothed posterior probabilitiesP c were
then used as prior probabilities in the segmentation of the second frame,
and similarly for all succeeding images. The results are given below in
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Fig. 2. Examples of the segmentation algorithm for different SAR video images. Frames 2, 4, 6, and 8 are shown, from to right and top to bottom.

Fig. 2, along with the prior probabilities used in segmenting each frame.
For all of these segmentations, (2) was applied two times to the orig-
inal image and to the posterior probabilities as well. The small amount
of smoothing needed makes the average per-frame segmentation time
significantly smaller than the average time required to segment still
images. Note that the amount of residual noise in the segmentation
drops from frame to frame. By the eighth frame, the speckles in the
segmentation have practically disappeared. We could have smoothed
the earlier frames more to remove this noise, but we have smoothed
all frames equally here to show how the segmentation improves as the
prior adapts.

We also tried using adaptive intensity distributions from frame to
frame. We did this by calculating new sample means and variances�c

and�c based on the segmentations of earlier images. As a further gen-
eralization, we tried relaxing the assumption of normally distributed
intensities. This was done by keeping track of the actual distribution of
intensities within each segmented class as frames were processed, and
then using this distribution asPr(Vi = v j Ci = c) when segmenting
succeeding frames. In general, we did not see a marked improvement
over the static distribution model when using either of these methods.
We believe that this is another indication that our basic method is ro-
bust.

V. CONCLUDING REMARKS

In this note we have used the technique introduced in [6] for the seg-
mentation of SAR data. We also extended this general approach to the
segmentation of video data. The result is a fast and reliable algorithm
that segments SAR data based both on prior and learned information.

Simple prior distributions and adaptation techniques were used in
this note, since the results obtained were already satisfactory. For
more difficult data, it is possible to introduce more sophisticated multi
scale texture models for the likelihood of the background. Another
possible extension will be to consider thatn, the number of classes
in the image, is not given and needs to be estimated as well. This
can be done for example via EM type algorithms. Note although that
since the scheme here described is extremely fast, especially for video
data were the number of smoothing steps is dramatically reduced, a
brute-force search forn in a given range might be good enough for a
number of applications.
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