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Abstract 

In this note, we consider a new method for an impor­
tant aspect of the visual tracking problem. Tracking 
in the presence of a disturbance is a classical control 
issue, but because of the highly uncertain nature of the 
disturbance, this type of problem is very difficult. A 
key issue in many visual tracking tasks is that of regis­
tration. Image registration is the process of establish­
ing a common geometric reference frame among sev­
eral data sets taken at different times. In this note, we 
propose a method of registration based on the Monge­
Kantorovich problem of optimal mass transport. We 
argue that such an approach can also be very useful for 
several problems in conmtolled active vision. 

Key words: Visual tracking, image registration, 
mass-preserving maps, optimal transport, gradient de­
scent. 

1 Introduction 

Image tracking is one of the key tasks in any visual 
control system. The method ofregistration, i.e., estab­
lishing a common geometric reference frame between 
two or more data sets from the same or different times, 
is essential in such a task. In this paper, we propose 
a new method based on the theory of mass-preserving 
maps and the optimal mass transport problem. This 
problem was first formulated by Monge in 1781, and 
concerned finding the optimal way, in the sense of min­
imal transportation cost, of moving a pile of soil from 
one site to another. The problem was given a modern 
formulation in the work of Kantorovich [12J, and so is 
now known as the Monge-Kantorovich problem. We 
should note that very recently, optimal transport has 
been used by Anders Rantzer [18J to study nonlinear 
system stability. 

0-7803-7061-91011$10.00 © 2001 IEEE 

The registration problem is one of the great challenges 
that must be addressed in order to make image-guided 
tracking a practical reality. Registration has a huge lit­
erature devoted to it with numerous approaches rang­
ing from statistical to computational fluid dynamics to 
various types of warping methodologies. See [20J for a 
number of recent papers on the subject as well as an 
extensive set of references. 

We should note that multimodal registration methods 
playa central role in image-guided systems. First, they 
allow for the fusing of information from each imaging 
modality, providing better and more accurate informa­
tion than can be obtained from each image viewed sep­
arately. Second, they allow quantitative comparison 
of images taken at different times, from which informa­
tion about evolution over time can be inferred. Finally, 
they allow for the updating of a precomputed image or 
model using real-time tracking data. 

Multimodal registration proceeds in several steps. 
First, each image or data set to be matched should 
be individually calibrated, corrected for imaging dis­
tortions and artifacts, and cleared of noise. Next, a 
measure of similarity between the data'sets must be 
established, so that one can quantify how close an im­
age is from another after transformations are applied. 
Next, the transformation that maximizes the similarity 
between the transformed images is found. Often this 
transformation is given as the solution of an optimiza­
tion problem where the transformations to be consid­
ered are constrained to be of a predetermined class. 
Finally, Once an optimal transformation is obtained, it 
is used to fuse the image data sets. 
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The technique we propose in this paper is designed for 
elastic registration, and is based on an optimization 
problem built around the L2 Kantorovich-Wasserstein 
distance taken as the similarity measure. The con­
straint that we will put on the transformations con-
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sidered is that they obey a mass preservation prop­
erty. Thus, we will be matching mass densities in this 
method, which may be thought of as weighted areas in 
2D or weighted volumes in 3D. We will assume that a 
rigid (non-elastic) registration process has already been 
applied before applying our scheme. 

2 Optimal Transport Problem 

We now give a modern formulation of the Monge­
Kantorovich problem. Let flo and fl, be two subdo­
mains of R d, with smooth boundaries, each with a 
positive density function, /1-0 and /1-1, respectively. We 
assume 

{ /1-0 = { /1-1 
Jno JUl 

so that the same total mass is associated with flo and 
fl , . We consider diffeomorphisms u from (flo, /1-0) to 
(fl1,/1-1) which map one density to the other in the 
sense that 

J1.o = /Du/ /1-1 0 U, (I) 

which we will call the mass preservation (MP) property, 
and write u E M P. Equation (1) is called the Jacobian 
equation. Here /Du/ denotes the determinant of the 
Jacobian map Du. In particular, Equation (1) implies, 
for example, that if a small region in flo is mapped 
to a larger region in nl , then there must be a corre­
sponding decrease in density in order for the mass to 
be preserved. A mapping u that satisfies this property 
may thus be thought of as defining a redistribution of 
a mass of material from one distribution J.lO to another 
distribution Jll. 

There may be many such mappings, and we want to 
pick out an optimal one in some sense. Accordingly, 
we define the LP Kantorovich-Wasserstein metric as 
follows: 

dp (/1-o,/1-dP := _ inf J I/u(x) - xl/ P/1-o(x) dx. (2) 
uEMP 

An optimal MP map, when it exists, is one which min­
imizes this integral. This functional is seen to place a 
penalty on the distance the map u moves each bit of 
material, weighted by the material's mass. 

The case p = 2 has been extensively studied and will 
the the one proposed in this paper for registration. The 
L2 Monge~Kantorovich problem has been studied in 
statistics, functional analysis, and the atmospheric sci­
ences; see [5, 3J and the references therein. A funda­
mental theoretical result [13, 4, 9], is that there is a 
unique optimal ii. E M P transporting /1-0 to /1-1, and 
that this ii. is characterized as the gradient of a convex 
function w, i.e., ii. = Vw. Note that from Equation (1), 
,ve have that w satisfies the Monge-Ampere equation 

IHwll'l o (V'w) =/1-0, 

where IHwl denotes the determinant of the Hessian Hw 
ofw. 
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Hence, the Kantorovich-Wasserstein metric defines the 
distance between two mass densities, by computing the 
cheapest way to transport the mass from one domain 
to the other with respect to the functional given in (2), 
the optimal transport map in the p = 2 case being 
the gradient of a certain function. The novelty of this 
result is that like the lliemann mapping theorem in the 
plane, the procedure singles out a particular map with 
preferred geometry. 

3 Algorithms for Computing The Transport 
Map 

There have been a number of algorithms considered 
for computing an optimal transport map. For exam­
ple, methods have been proposed based on linear pro­
gramming [17], and on Lagrangian mechanics closely 
related to ideas from the study of fluid dynamics [3J. 
An interesting geometriC method has been formulated 
by Cullen and Purser [5]. 

In this section, we will employ a natural solution based 
on the equivalent problem of polar factorization; see 
[4,8, 14J and the references therein. We will work with 
the general case of subdomains in Rd, and point out 
some simplifications that are possible for the R 2 case. 

As above, let 0 0 , 0 1 C Rd be sub domains with smooth 
boundaries, with corresponding positive density func­
tions /1-0 and Jll satisfying Ino po = Inl/1-1. Let 
u : (flo, 1'0) -+ (fl

" 
1'1) be an initial mapping with 

the mass preserving (MP) property. Then according to 
the generalized results of [4, 8J, one can write 

u = (V'w) 08, (3) 

where w is a convex function and 8 is an MP mapping 
8: (flo, 1'0) -+ (flo, 1'0). This is the polar jactorization 
of u with respect to J1.o. In [8], just the case of area 
preservation is considered, i.e., f-Lo is assumed constant, 
but the general case goes through as well. 

Our goal is to find the polar factorization of the MP 
mapping u, according to the following strategy. We 
consider the family of MP mappings of the form u = 
u 0 8-1 as 8 varies over MP mappings from (no, po) 
to itself. If we consider ii. as a vector field, we can 
always find a function wand another vector field x, 
with div(X) = 0, such that 

U=V'W+X, 

Le., we can decompose ii. into the sum of a curl-free and 
divergence-free vector field [19J. Thus, what we try to 
do is find a mapping 8 which will yield a u without any 
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curl, that is, such that it == Vw. Once such an s is 
found, we will have u = u 0 s = (\lw) 0 s and so we 
will have found the polar factorization (3) of our given 
function u. 

Now, here is the key point. As we discussed above, the 
unique optimal solution of the £2 Monge-Kantorovich 
problem has the form u = \lw, and so the problem 
of finding the polar factorization of u and finding the 
optimal Monge-Kantorovich mapping u are equivalent. 
In essence, to solve the Monge-Kantorovich problem 
we create a "rearrangement" of an initial vector field 
u using a map s, so that the resulting vector field it = 
u 0 8-1 has no curl. We can now give the technical 
details. 

3.1 Initial Mapping 
We will now propose an explicit algorithm to solve 
the Monge-Kantorovich problem. So we want to min­
imize the £2 Kantorovich-Wasserstein distance func­
tional over MP functions from (00,1'0) to (01 , I'll· We 
wi\! try to do this by finding an initial MP mapping u 
and then minimizing over ii == uos- 1 by varying s over 
MP mappings from 0 0 to 0 0 , starting with s equal to 
the identity map. Our first task is to find and initial 
MP mapping u. This can be done for general domains 
using a method of Moser [15, 6], or for simpler domains 
using the following algorithm. For simplicity, we work 
in R2 and assume 0 0 = 0 1 = [0, IF, the generalization 
to higher dimensions being straightforward. We define 
a function a = a(x) by the equation 

which gives by differentiation with respect to x 

a'(x) 11 I'I(a(x),y) dy = 11 I'o(x,y) dy. (5) 

We may now define a function b = b(x,y) by the equa­
tion 

rb(x,y) f" 
a'ex) io 1'1 (a(x),p) dp = io 1'0(X,p) dp, (6) 

and set u(x, y) = (a(x), b(x, y)). Since ay = 0, IDul = 
axby, and differentiating (6) with respect to y we find 

a'ex) by(x,y) I'I(a(x),b(x,y)) = I'o(x,y) 

IDull'1 0 u 1'0, 

which is the MP property we need. This process can 
be interpreted as the solution of a one-dimensional 
Monge-Kantorovich problem in the x direction fol­
lowed by the solution of a family of one-dimensional 
Monge-Kantorovich problems in the y direction. 
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3.2 Gradient Descent 
Once an initial MP u is found, we need to apply the pro­
cess which will remove its curl. We begin with the fol­
lowing elementary and intuitive property of MP map­
pings, the proof of which is a simple calculation. 

Lemma: The composition of two mass preserving (MP) 
mappings is an MP mapping. The inverse of an MP 
mapping is an MP mapping. 

Thus, since u is an MP mapping, we have that u == 
u 0 S-1 is an MP mapping if and only if s is, that is, if 
and only if 

1'0 = IDsIl'o 0 s. 

In particular, when J1.0 is constant, this equation re­
quires that s be area or volume preserving. 

Next, rather than working with s directly, we solve the 
polar factorization problem via gradient descent. Ac­
cordingly, we will asSume that s is a function of time, 
and then determine what St should be to decrease the 
L2 Monge-Kantorovich functional. This will give us an 
evolution equation for s and in turn an equation for iit 
as well, the latter being the most important for imple­
mentation. By differentiating u 0 s = u with respect to 
time, we get 

iit -DUSt 

where we've abused notation to define St :== StOS-i. We 
need to make sure that s maintains its MP property. 
Differentiating 1'0 = IDsli'O 0 s with respect to time, 
we derive 

div(I'O St) = 0, 

from which we see that iit , St and Ut should have the 
following forms: 

iit 2-(, (7) 
1'0 

St Co () 08, (8) 

1 
U, --Du(, (9) 

1'0 

for some vector field ( on 0 0 , with div«() = 0 and 
«(, ii) = 0 On aflo, ii being the normal to the boundary 
of 0 0 . This last condition ensures that s remains a 
mapping from flo to itself, by preventing the flow of s, 

given by St = (;!o() 0 s, from crossing the boundary 

of flo. This also means that the range of u = u 0 8- 1 is 
always u(Oo) = 0 1 . 

Consider now the problem of minimizing the Monge­
Kantorovich functional: 

M (10) 
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The last term is obviously independent of time. Inter­
estingly, so is the first, 

j lluW/1-o '" jlluOS-III'/1-0 

= j lIu 0 s-III'IDs-il /1-0 0 S-I 

'" j lIull'/1-o 

where /1-0 '" IDs-II Po 0 s-I since S-I is an MP map. 

Turning now to the middle term, we do a similar trick, 

j (u,x)/1-0 j (uos-I,sos-I) /1-0 

j (uos-l,sos-l) IDs-il/1-ooS-I 

j (u,s) Po, 

and taking St = (*() 0 s, we compute 

Now decomposing u as u '" \lw + X, we have 

-~ M, = j (\lw + X, () (12) 

'" j (\lw, () + j (X, () (13) 

j (div(w() - w div(()) + j (X, ()(14) 

( w(('n)+j(x,() (15) lano 

'" j (x,()· (16) 

Thus, in order to decrease M, we can take ( '" X with 
corresponding formulas (7)-(9) for s" s" and U" pro­
vided that we have div(X) '" 0 and (X, Ti) = 0 on ano. 
Thus it remains to show that we can decompose it as 
u = \lw + X for such a X. 

Gradient Descent: Rd: 

We let w be a solution of the Neumann-type boundary 
problem 

div(u) Aw (17) 

(\lw, Ti) = (u, Ti) on ano, (18) 

and set X = u-\lw. It is then easily seen that X satisfies 
the necessary requirements. 
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Thus, by (9), we have the following evolution equation 
for u: 

Ut = -~Du (u - \lA-1div(u)). (19) 
/1-0 

This is a first order non-local scheme for 'fit if we count 
6 -1 as minus 2 derivatives. Note that this flow is 
consistent with respect to the Monge-Kantorovich the­
ory in the following sense. If u is optimal, then it is 
given as u = \lw, in which case u - \lA-Idiv(u) = 
\lw - \I A -Idiv(\lw) = 0 so that by (19), u, = O. 

Gradient Descent: R2: 

The situation is somewhat simpler in the R 2 case, due 
to the fact that a divergence free vector field X can in 
general be written as X = \l1.h for some scalar func­
tion h, where 1. represents rotation by 90 deg, so that 
\l1.h = (-hy, hx ). In this case, (16) becomes 

-~M, = j (\11. f, \l1.h) = j (\If, \lh) (20) 

where the decomposition of u is u = \lw + \11. f, and 
we can take h = f. The function f can be found by 
solving the Dirichlet-type boundary problem 

- div(u1.) 

f 
Af, 
o on ano, 

(21) 

(22) 

which gives us the evolution equation 

- _ 1 D-,-,1.A-1d' (-1.) Ut - - U V L.l IV U . 
1'0 

(23) 

We may also derive a second order local evolution equa­
tion for u by using the divergence theorem with (20) to 
get 

(24) 

3.3 Computing the Optimal Warping Map 
Typically in elastic registration and optimal flow, one 
wants to see an explicit warping which smoothly de­
forms one image into the other. This can easily be done 
using the solution of the Monge-Kantorovich problem. 
Thus, we assume now that we have applied our gradi­
ent descent process as described above and that it has 
converged to the Monge-Kantorovich mapping UMK. 

Following the work of Benamou and Brenier, [3], (see 
also [9]), we consider the following related problem: 

inf j [/1-(t,X)llv(t,X)11 2 dtdx 

over all time varying densities I' and velocity fields v 
satisfying 

~ + div(/1-v) = 0, (25) 

1'(0,·) /1-0, 1'(1,·) = 1'1. (26) 
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It is shown in [3] that this infimum is attained for 
some Jimin and Vmin, and that it is equal to the L2 

Kantorovich-Wasserstein distance between J.lo and J1.1. 
Further, the flow X = X (x, t) corresponding to the 
minimizing velocity field Vmin via 

X(x,O) = x, X, = Vmin 0 X 

is given simply as 

X(x,t) =x+t (UMK(X) -x). (27) 

Note that when t = 0, X is the identity map and when 
t = 1, it is the solution UMK to the Monge-Kantorovich 
problem. This analysis provides appropriate justifica­
tion for using (27) to define our continuous warping 
map X between the densities J1.o and 1"1. 

We tested the method on a sequence of brain data used 
in medical imaging. In Figures 1 through 4 we show a 
brain deformation sequence. Here, the first and last im­
ages were given, and the intermediate two were found 
using our process. This type of elastic brain deforma­
tion occurs during surgery, after the skull is opened. 

4 Conclusions 

In this paper, we presented a natural method for image 
registration based on the classical problem of optimal 
mass transportation. We showed that for an L2 version 
of the problem, one could derive easily-implementable 
gradient descent equations to carry out the method. 
OUf approach allows us to have non-uniform densities 
on hoth the domain and range. 

Although applied here to the Monge-Kantorovich 
problem, the method used to enforce the mass preser­
vation constraint is general and has other applications. 
In particular, the concept a harmonic mapping, defined 
as a minimizer of the Dirichlet integral, can be com­
bined with a mass preservation constraint to obtain a 
new approach to mass-preserving diffeomorphisms [IJ. 
We state the results for Euclidean space even though 
they apply more generally to Riemannian surfaces. As 
above, let no, nl C R2 be subdomains equipped with 
positive densities J.to and J1.1, respectively, and consider 
the minimization of the Dirichlet integral over all MP 
maps: 

_ min {IIDuI1 2 
• 

UEMP }", 
(28) 

A minimizer, when it exists, is called an MP map of 
minimal distortion. 

Non-local and local gradient descent methods for com­
puting such a map of minimal distortion can be derived 
in a manner very similar to that described above for 
the Monge-Kantorovich functional [I}. These methods 
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have applications to optical flow for tracking, and can 
be naturally combined with the Monge-Kantorovich 
methodology described above. 
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Figure 2: Brain Warping: t = 0.33 

Figure 3: Brain Warping: t = 0.66 

Figure 4: Brain Warping: t = 1.00 
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