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Abstract 

I m a g e  registration i s  t h e  process of establishing a com-  
mon, geometr ic  reference f r a m e  between t w o  o r  m o r e  
data se t s  f r o m  the  s a m e  o r  different imaging  modali- 
t i es  possibly t a k e n  a t  different tames. In the  context of 
medical imaging  and  in particular image  guided ther- 
apy,  t h e  registration problem consists of f ind ing  auto- 
mated  methods  t h a t  align multiple data sets wi th  each 
o ther  a n d  wi th  t h e  pat ien t .  In this paper we  propose 
a method of elastic registration based o n  t h e  Monge-  
Kantorov ich  problem of optimal m a s s  transport.  

1 Introduction 

In this paper, we propose a method for image warping 
and elastic registration based on the classical problem 
of optimal mass transport. The mass transport prob- 
lem was first formulated by Gaspar Monge in 1781, and 
concerned finding the optimal way, in the sense of min- 
imal transportation cost, of moving a pile of soil from 
one site to  another. This problem was given a modern 
formulation in the work of Kantorovich [12], and so is 
now known as the Monge-Kantorovich problem. 

This type of problem has appeared in econometrics, 
fluid dynamics, automatic control, transportation, sta- 
tistical physics, shape optimization, expert systems: 
and meteorology [16]. It also naturally fits into certain 
problems in computer vision [6]. In particular, for the 
general tracking problem, a robust and reliable object 
and shape recognition system is of major importance. 
-4 key way to carry this out is via t empla te  matching ,  
which is the matching of some object to another within 
a given catalogue of objects. Typically, the match will 
not be exact and hence some criterion is necessary to 
measure the [‘goodness of fit.” For a description of var- 
ious matching procedures, see [ll] and the references 

therein. The matching criterion can also be considered 
a shape m e t r i c  for measuring the similarity between 
two objects. 

The registration problem is one of the great challenges 
that must be addressed in order to make image-guided 
surgery a practical reality. Registration is the process 
of establishing a common geometric reference frame be- 
tween two or more data sets obtained by possibly dif- 
ferent imaging modalities. In the context of medical 
imaging, this is an essential technique for improving 
preoperative and intraoperative informacion for diag- 
nosis and image-guided therapy. Registration has a 
huge literature devoted to  it with numerous approaches 
ranging from statistical to computational fluid dynam- 
ics to various types of warping methodologies. See [li] 
for a number of recent papers on the subject as well as 
an extensive set of references. 

Indeed, multimodal registration methods play a cen- 
tral role in image-guided therapy systems. First, they 
allow for the fusing of information from each imaging 
modality, providing better and more accurate informa- 
tion than can be obtained from each image viewed sep- 
arately. An example is the fusion of functional imag- 
ing with anatomical information from MRI for better 
localization of damaged brain areas. Second, they al- 
low quantitative comparison of images taken at  differ- 
ent times, from which information about evolution over 
time can be inferred. An example is the monit!oring of 
tumor growth in image sequences. Third, when reg- 
istering preoperative and intraoperative images: they 
provide a larger field of view and higher image qual- 
ity than that available with the intraoperative images 
alone. An example is the fusion of video images ob- 
tained by the laparoscope’s video camera with MRI 
data. Fourth, they allow for the updating of a preop- 
erative image or model using intraoperative tracking 
data. 
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Multimodal registration proceeds in several steps. 
First, each image or data set to be matched should 
be individually calibrated, corrected for imaging dis- 
tortions and artifacts, and cleared of noise. Next, a 
measure of similarity between the data sets must be es- 
tablished, so that one can quantify how close an image 
is from another after transformations are applied. Such 
a measure may include the similarity between pixel in- 
tensity values, as well as the proximity of predefined 
image features such as implanted fiducials, anatomical 
landmarks, surface contours, and ridge lines. Next, the 
transformation that maximizes the similarity between 
the transformed images is found. Often this transfor- 
mation is given as the solution of an optimization prob- 
lem where the transformations to be considered are 
constrained to  be of a predetermined class. Finally, 
once an optimal transformation is obtained, it is used 
to fuse the image data sets. 

The method we propose in this paper is designed for 
elastic registration, and is based on an optimization 
problem built around the L2 Kantorovich-Wasserstein 
distance taken as the similarity measure. The con- 
straint that  we will put on the transformations con- 
sidered is that  they obey a mass preservation prop- 
erty. Thus, we will be matching m a s s  dens i t ies  in this 
method, which may be thought of as weighted areas in 
2D or weighted volumes in 3D. We will assume that a 
rigid (non-elastic) registration process has already been 
applied before applying our scheme. 

This type of mass preservation problem occurs natu- 
rally in many areas. For example, when registering the 
proton density based imagery provided by MR. It also 
occurs in functional MR, where one may want to com- 
pare the degree of activity in various features deforming 
over time, and obtain a corresponding elastic registra- 
tion map. -4 special case of this problem occurs in any 
application where volume or area preserving mappings 
are considered. 

We will give a precise formulation of the problem below 
(see Section 2) ,  and then develop an algorithm based in 
part on the work of [7 ,  141. The key idea is to  find the 
optimal mapping via an equivalent problem involving 
certain factorizations (called “polar”) of mass preserv- 
ing mappings. It will turn out that this may be done 
via a natural gradient descent technique. The details 
are given in Section 3. We will illustrate our results on 
some synthetic densities and on real imagery in Sec- 
tion 4. 

2 Formulation of the Problem 

We now give a modern formulation of the Monge- 
Kantorovich problem. Let 0 0  and R I  be two subdo- 
mains of Rd, with smooth boundaries? each with a 

positive density function, PO and ~ 1 ,  respectively. We 
assume 

s,, = h, 
so that the same total mass is associated with no and 
R1. We consider diffeomorphisms ii from ( 0 0 , ~ ~ )  to 
(i21,pl) which map one density to the other in t h e  
sense that  

Po = ID4 P1 O f i ,  (1)’ 
which we will call the m a s s  preservat ion  (MP) property, 
and write ii E M P .  Equation (1) is called the Jacobzan. 
equatzon. Here IDiil denotes the determinant of the 
Jacobian map DU.. In particular, Equation (1) implies, 
for example, that  if a small region in Ro is mapped; 
to  a larger region in R I ,  then there must be a corre- 
sponding decrease in density in order for the mass to. 
be preserved. A mapping fi that satisfies this property 
may thus be thought of as defining a redistribution of 
a mass of material from one distribution po to  anotheE 
distribution p1. 

There may be many such mappings, and we want to, 
pick out an optimal one in some sense. Accordingly, 
we define the LP Kantorovich-Wasserstein metric as, 
follows: 

An optamal MP m a p ,  when it exists, is one which min- 
imizes this integral. This functional is seen to  place a 
penalty on the distance the map U moves each bit of 
material, weighted by the material’s mass. 

The case p = 2 has been extensively studied and will 
the the one proposed in this paper for registration. The 
L2 Monge-Kantorovich problem has been studied in 
statistics, functional analysis, and the atmospheric sci- 
ences; see [ 5 ,  31 and the references therein. A funda- 
mental theoretical result [13, 4, 81, is that there is a 
unique optimal ii E M P  transporting 10 to p1,  and 
that this U. is characterized as the gradient of a convex 
function w,  i.e., U. = V w .  Note that from Equation (l), 
we have that  w satisfies the Monge-Ampdre  equation 

where lHwl denotes the determinant of the Hessian Hu: 
of w. 

Hence, the Kantorovich-Wasserstein metric defines the 
distance between two mass densities, by computing the 
cheapest way to transport the mass from one domain 
to the other with respect to the functional given in (2) ,  
the optimal transport map in the p = 2 case being 
the gradient of a certain function. The novelty of this 
result is that like the Riemann mapping theorem in the 
plane, the procedure singles out a particular map with 
preferred geometry. 
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3 Algorithms for Computing The Transport 
Map 

There have been a number of algorithms considered 
for computing an optimal transport map. For exam- 
ple, methods have been proposed based on linear pro- 
gramming [16]. and on Lagrangian mechanics closely 
related to  ideas from the study of fluid dynamics [3]. 
-4n interesting geometric method has been formulated 
by Cullen and Purser [ 5 ] .  

In this section, we will employ a natural solution based 
on the equivalent problem of polar factorzzatzon; see 
[4, 7, 141 and the references therein. We will work with 
the general case of subdomains in Rd, and point out 
some simplifications that are possible for the R2 case. 

As above, let 00, RI c Rd be subdomains with smooth 
boundaries, with corresponding positive density func- 
tions PO and p1 satisfying sa, po = sa, p1. Let 
U : (00 ,po )  -+ (01 ,p I )  be an initial mapping with 
the mass preserving (MP) property. Then according to  
the generalized results of [4, 71, one can write 

U = (Vw) 0 s, (3) 

where w is a convex function and s is an MP mapping 
s : ( 0 0 . ~ 0 )  -+ ( 0 0 . p o ) .  This is the polar factorzzatzon 
of U with respect to PO.  In [7], just the case of area 
preservation is considered. i.e., PO is assumed constant. 
but the general case goes through as well. 

Our goal is to find the polar factorization of the MP 
mapping U ,  according to the following strategy. We 
consider the family of MP mappings of the form U = 
U 0 s-' as s varies over MP mappings from ( n o ,  P O )  

to itself. If we consider 21 as a vector field, we can 
always find a function w and another vector field x, 
with div(X) = 0, such that 

U = V w + x ,  

i.e., we can decompose U into the sum of a curl-free and 
divergence-free vector field. Thus, what we try to do is 
find a mapping s which will yield a ii without any curl, 
that is, such that, U = Vu). Once such an s is found, 
we will have U = ii o s = (Vw) 0 s and so we will have 
found the polar factorization (3) of our given function 
U .  

Now, here is the key point. As we discussed above. the 
unique optimal solution of the L' Monge-Kantorovich 
problem has the form ii = Vw, and so the problem 
of finding the polar factorization of U and finding the 
optimal Monge-Kantorovich mapping ii are equivalent. 
In essence, to  solve the Monge-Kantorovich problem 
we create a "rearrangement" of an initial vector field 
U using a map s. so that the resulting vector field U = 
U 0 s-l has no curl. We can now give the technical 
details. 

1 Finding an Initial Mapping 
We will now propose an explicit algorithm to solve 
the Monge-Kantorovich problem. So we want to min- 
imize the L2 Kantorovich-Wasserstein distance func- 
tional over MP functions from ( 0 0 ,  P O )  to ( R 1 , p l ) .  We 
will try to do this by finding an initial MP mapping U 

and then minimizing over ii = U o s-' by varying s over 
MP mappings from 00 t o  00, starting with s equal t o  
the identity map. Our first task is to find and initial 
hIP mapping U .  This can be done for general domains 
using a method of Moser [l5], or for simpler domains 
using the following algorithm. For simplicity, we work 
in R2 and assume 00 = 01 = [0, 112, the generalization 
to higher dimensions being straightforward. We define 
a function a = a ( z )  by the equation 

L'(z) J,' P1(77! Y) dY d77 = LX 1' PO(77,Y) dY d77 (4) 

u-hich gives by differentiation with respect to x 

We may now define a function b = b(z: y)  by the equa- 
tion 

and set u(x, y) = (a(z), b(x ,  y)).  Since a,  = 0, \DUI = 
a z b y ,  and differentiating (6) with respect to y we find 

a'(.) b,(G Y) Pl (a(x), b ( z ,  Y)) = PO(Z, Y) 
lDul P l  o'u. = PO; 

which is the hIP property we need. This process can 
be interpreted as the solution of a one-dimensional 
Monge-Kantorovich problem in the z direction fol- 
lowed by the solution of a family of one-dimensional 
Monge-Kantorovich problems in the y direction. 

2 Removing the Curl 
Once an initial MP U is found, we need to apply the pro- 
cess which will remove its curl. We begin with the fol- 
lowing elementary and intuitive property of MP map- 
pings, the proof of which is a simple calculation. 

L e m m a :  The composition of two mass preserving (MP) 
mappings is an MP mapping. The inverse of an MP 
mapping is an MP mapping. 

Thus. since U is an MP mapping. we have that 21 = 
U 0 s-' is an MP mapping if and only if s is, that is, if 
and only if 

Po = P S I  Po 0 s. 

In particular, when po is constant; this equation re- 
quires that s be area or volume preserving. 
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Next, rather than working with s directly, we solve the 
polar factorization problem via gradient descent. .4c- 
cordingly, we will assume that s is a function of time, 
and then determine what st should be to decrease the 
L2 Monge-Kantorovich functional. This will give us an 
evolution equation for s and in turn an equation for 'LLt 
as well, the latter being the most important for imple- 
mentation. By differentiating ii 0 s = U with respect to 
time, we get 

Ut = -DiiSt 

where we've abused notation to  define St := st o s - ' .  We 
need to make sure that  s maintains its MP property. 
Differentiating PO = IDS[ PO 0 s with respect to  time, 
we derive 

div(poSt) = 0, 

from which we see that S t ,  st and f i t  should have the 
following forms: 

1 
PO 

dt = -C: 

S t  = (kC) o s ,  

for some vector field < on 00, with div(C) = 0 and 
(C, 5) = 0 on 800, 5 being the normal to the boundary 
of 00. This last condition ensures that s remains a 
mapping from 00 to itself, by preventing the flow of s ,  
given by st = (&<) o s ,  from crossing the boundary 
of Ro. This also means that the range of U = U o s-l is 
always U ( & )  = 0,. 

Consider now the problem of minimizing the Monge- 
Kantorovich functional: 

M = J 1 / G - 2 1 1 ~ P o  (10) 

= / l l i i l l ~ P o  - 2 J ~ i i , z ~ P 0 + ~ 1 1 ~ 1 1 ~ P o ~ l l ~  

The last term is obviously independent of time. Inter- 
estingly, so is the first, 

?Po 

where PO = IDS-'\ 

Turning now to  the middle term, we do a similar trick, 

0 s-l since s-' is an MP map. 

/(ii, 5) Po = J ( U  0 s-1, s 0 s-1) PO 

= J ( U  0 s-1.s 0 .-I) lus-ll Po 0 s-1 

= J ( U , S )  Po. 

- - M t  1 = / ( U , < ) .  

--n4t 2 = / ( x . c J .  (12) 

and taking st = (kc) o s ,  we compute 

2 

Xow decomposing ii as ii = G w  + x. we have 

1 

where we've used the divergence theorem. div(<) = 0. 
and (<,6)  = 0 on 800. Thus, in order to decrease M. 
we can take c = x with corresponding formulas (7)-(9) 
for s t ,  d t .  and fit, provided that we have div(X) = 0 
and (x,6) = 0 on 800. Thus it remains to  show that 
we can decompose ii as ti = Vw + x for such a x. 

Gradient Descent: Rd: 

We let 'U) be a solution of the Neurnann-type boundary 
problem 

div(ii) = A w  (13) 
( V W , ~ ' )  = (ii.6) on doo,  (14) 

and set x = 6-Vw. It is then easily seen that x satisfies 
the necessary requirements. 

Thus. by (9). we have the following evolution equation 
for U: 

(15) 

This is a first order non-local scheme for U t  if we count 
A-1 as minus 2 derivatives. Note that  this flow is 
consistent with respect to  the Monge-Kantorovich the- 
ory in the following sense. If U is optimal, then it is 
given as ii = Ow, in which case ii - OA-'div(ii) = 
Vw - V4-'div(Vw) = 0 so that by (13). iit = 0. 

1 
PO 

i i t  = -- D T ~  (fi - VA-ldl\-(ii)) . 

Gradient Descent: R2: 

The situation is sometvha,t simpler in the R2 case, due 
to the fact that a divergence free vector field x can in 
general be written as x = V l h  for some scalar func- 
tion h, where I represents rotation by 90deg, so that 
V l h  = ( -hyr  hz) .  In this case, (12) becomes 

--Mt 1 = / ( V l f , V l h )  = / ( V f , V h )  (16) 
2 

where the decomposition of U. is ii = V w  + V I  f ,  and 
we can take h = f .  The function f can be found by 
solving the Dirichlet-type boundary problem 

- div(iiL) = Af ,  (17) 
f = OondOo,  (18) 
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which gives us the evolution equation 

We may also derive a second order local evolution.equa- 
tion for ii by using the divergence theorem with (‘16) to 
get 

iit = -- DiiVLdiv(iiLI), 

where appropriate handling of the evolution ac the 
boundary. as described in Section 4, is required! 

(20) 
1 

FO 

3 Defining the Warping Map 
Typically in elastic registration, one wants to see an ex- 
plicit warping which smoothly deforms one image into 
the other. This can easily be done using the solution 
of the Monge-Kantorovich problem. Thus; we assume 
now that we have applied our gradient descent process 
as described above and that it has converged to the 
Monge-Kantorovich rnapping G M K .  

Following the work of Benamou and Brenier. 131, (see 
also [ 8 ] ) .  we consider the following related problem: 

over all time varying densities p and velocity fields 2: 

satisfying 

(21) 

p ( 0 ; )  = PO. P(1:) = PI. (22) 

8 P  - + div(pz.) = 0. 
at 

It is shou-n in [3] that this infimum is attained for 
some pmzn and umzn, and that it is equal to the L’ 
Kantorovich-Wasserstein distance between pa and ~ 1 .  

Further, the flow A‘ = X ( x , t )  corresponding to the 
minimizing velocity field u, ,~ via 

S ( Z .  0 )  = x. -7it = U,,, 0 

is given simply as 

X ( Z . t )  = 5 + t ( i i M h . ( T )  - .). (23) 

Note that when t = 0, .Y is the identity map and when 
t = 1, i t  is the solution ‘ U M K  to the Monge-Kantorovich 
problem. This analysis provides appropriate justifica- 
tion fox using (23) to define our continuous a -ap ing  
map X between the densities po and p1. 

4 Implementation and Examples 

been histogrammed, and its values have been scaled 
from 0.25 to 4.0. In Figure 2, we show the Tiffany 
image histogrammed and scaled in the same manner 
as Lena. The initial mapping U is shown in Figure 3. 
The shading in this example differs from the previous 
one in that we have simply taken the Lena pixel val- 
ues pa and transported them via the mapping U .  Here; 
the Jacobian of U ranges between 1/16 and 16. Sext ,  
in Figure 4, we show the Monge-Kantorovich optimal 
mapping G M K ,  again found by applying the non-local 
flow (19). The Monge-Kantorovich mapping can be 
seen to be much more regular, and indicates the poten- 
tial of the method. The processing of 1000 iterations 
took about 12 minutes. 

Next, we use the warp function (23) t o  find a continu- 
ous transformation of Lena to  Tiffany. This is illus- 
trated in Figures 5 through 9, which correspond to  
t = 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0. Here, we have 
shaded the target points by IDX-*I po o X-l. which 
can be seen by (1) to vary smoothly between Lena at  
time 0.0 and Tiffany at time 1.0 

Finally, in Figures 10 through 13 we show a brain defor- 
mation sequence. Here, the first and last images were 
given, and the intermediate two were found using our 
process. This type of elastic brain deformation occurs 
during surgery. after the skull is opened. 

IVe have also successfully implemented the second or- 
der local flow (20), with similar results. In this case. we 
require that a periodic boundary condition be enforced. 
specifically that ii - x be periodic on the square image 
domain. We also used an upwinding scheme when cal- 
culating Dii. While it may seem that this local flow 
should provide a faster method than the non-local flow 
(19). in practice this does not seem to be the case. Even 
though the non-local method requires that the Lapla- 
cian be inverted during each iteration. the problem has 
been set up to allow the use of fast numerical solvers 
which use FFT-type methods and operate on rectangu- 
lar grids. We have used the Matlab solver here, which 
uses sine transforms followed by the solution of a tri- 
diagonal system. Moreover. we have found that the 
functional is decreased substantially more during each 
iteration of the non-local method. using the maximum 
temporal step size allowed for stability in each case. 

In general, the target domain RI need not be rectan- 
gular when using the non-local method. However. we 
note that if the periodic boundary condition described 
above is used, then the Laplacian in (19) can be in- 
verted using the FFT alone. without the need to solve 
a subsequent matrix system. For the Lena to Tiffany 
warp, this reduced the processing time by 113. 

We tested the method by optimally mapping po. .a 256 
x 256 “Lena” image, onto p1. a “Tiffany” image. In 
Figure 1, we have the original Lena image. It has 
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5 Conclusions 

In this paper. we presented a natural method for image 
registration based on the classical problem of optimal 
mass transportation. We showed that for an L2 \-ersion 
of the problem. one could derive easily-implementable 
gradient descent equations to carry out the method. 
Our approach allows us to have non-uniform densities 
on both the domain and range. 

Although applied here to the Monge-Kantorovich 
problem, the method used to enforce the mass preser- 
vation constraint is general and has other applications. 
In particular, the concept a harmonic mapping, defined 
as a minimizer of the Dirichlet integral, can be com- 
bined with a mass preservation constraint to obtain a 
new approach to  mass-preserving diffeomorphisms [ 11. 
A minimizer, when it exists, is called an MP map of 
minimal distortion. Non-local and local gradient de- 
scent methods for computing such a map of minimal 
distortion can be derived in a manner very similar tcJ 
that described above for the Monge-Kantorovich func- 
tional [l]. These methods have applications to brain 
surface flattening and virtual colonoscopy as described 
in [2, IO]. 
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Figure 2: Target Tiffany Image 
Figure 5: Lena to Tiffany Warp: t = 0.1 

Figure 3: Initial Mass-Preserving Mapping 
Figure 6: Lena to Tiffany Warp: t = 0.5 

Figure 4: Final Monge-Kantorovich Mapping 

Figure 7: Lena to Tiffany Warp: t = 0.7 
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Figure 8: Lena to Tiffany Warp: t = 0.9 
Figure 11: Brain Warping: t = 0.33 

Figure 9: Lena to Tiffany Warp: t = 1.0 

Figure 10: Brain Warping: t = 0.00 

Figure 12: Brain Warping: t = 0.66 

Figure 13: Brain Warping: t = 1.00 
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