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On the Laplace—Beltrami Operator and
Brain Surface Flattening

Sigurd Angenent, Steven Haker, Allen Tannenbaum,* and Ron Kikinis

Abstract—In this paper, using certain conformal mappings Moreover, one can explicitly write down how the metric is
from uniformization theory, we give an explicit method for transformed and thus areas and the geodesics as well. Specif-

flatt_ening the brain surface in away_which preserves angle_s. From ically, the elements of the first fundamental fo(®, F, G)
a triangulated surface representation of the cortex, we indicate

how the procedure may be implemented using finite elements. &€ transformed agoE, pF, pG) with p depending on the
Further, we show how the geometry of the brain surface may be point of the surface. (See [9] and [10] for all the details.) For

studied using this approach. this reason, conformal mappings are often described as being
Index Terms—Brain flattening, functional MRI, harmonic ~ Similarities in the small. In short, the mapping can be used
maps, segmentation. to obtain an atlas of the brain surface in a straightforward

canonical manner.
We should note that our approach to brain flattening is quite
different from the previous works cited above, which typically
ECENTLY, a number of techniques have been proposegdnsider local area or length preserving deformations. For
to obtain a flattened representation of the cortical surfa@gampm, in the nice approaches of [7] and [16], the authors
(see, e.g., [6]-[8], [16], and [28] and the references thereif}. 5 parameterized deformable surface whose topology is
Flattening the brain surface has uses in many areas, includifgppaple to a sphere. Then, it is possible to represent the brain
functional magnetic resonance imaging. Indeed, since it dgrface on a planar map by using spherical coordinates. Work
important to visualize functional magnetic resonance imagings also been done on quasi-isometrics and quasi-conformal
data for neural activity within the three dimensional folds Oﬁ_attenings of the brain surface (see, e.g., [4] and [24]). In these
the brain, flattened representations have become an increagiigresting approaches, the authors start from a triangulated
important approach to such visualization techniques. representation of the given surface and typically employ a
A basic assumption is that the topology of the brain surfagga, ation method to discretely minimize an energy functional.

is the same as that of a crumpled sheet and, in particul@f ;s they cannot guarantee bijectivity and, in particular,
does not have any holes or self intersections. Our appro not guarantee that triangles do not flip. In our case, our

to ﬂa_ttenlng such a surface is .based on the exploitation Ofir‘leftial intuition is continuous, i.e., we explicitly construct the
certain fact from the theory of Riemann surfaces from compl

I. INTRODUCTION

Vsi d i . that ; ¢ ljective conformal equivalence on a continuous model of the
analysis anc geometry, namely, hat a surtace ot genus z&fdc, - and only then move to the discrete implementation. If

(no handles) without any holes or self intersections can be . . o .
. a quasi-length or area-preserving mapping is desired, then our
mapped conformally onto the sphere and any local portion . : . . . . .
conformal mapping technique is a good starting point, since it

thereof onto a disc. In this way, the brain surface may bg.. . : )
L . iciently unfolds the surface while locally preserving shape.
flattened. The mapping is conformal in the sense that anglé e .
n our work, the key observation is that the flattening

re preserved. It is also bijective (onto and on n . ) )
are preserved. |t is also bijective (onto and one to one) apudnctlon may be obtained as the solution of a second-order

thus there is no problem with triangles flipping or overlapping”iptic partial differential equation (PDE) on the surface to

and no cuts need be made on the surface. : ;
be flattened. For triangulated surfaces, there exist powerful
Manuscript received June 24, 1998; revised March 11, 1999. This worgliable finite-element procedures which can be employed to

was supported in part by the National Science Foundation under Grants DMSr ; ; ; ; i
9058492, ECS-9700588, and NSF-LIS, by the Air Force Office of Scienti'f\ftﬁjmenca”y approximate the ﬂattemng function. Pre“mmary

Research under Grant AF/F49620-98-1-0168, by the Army Research offf@sults along these lines were reported in the technical report
under Grant DAAG55-98-1-0169, and in part by a grant from MURI. Th¢l]. In our case, we may use the fast segmentation methods

Associate Editor responsible for coordinating the review of this paper a ;
recommending its publication was M. Vannidsterisk indicates correspond- 'Eﬁ [15]’ [25]’ and [26] to represent the cortical surface as a

ing author triangulated surface to which we apply our procedure.
S. Angenent is with the Department of Mathematics, University of Wiscon- The outline of this paper is as follows. In Section Il, we
sin, Madison, Wi 53705 USA etch the analytical procedure to find the flattenin al
S. Haker and *A. Tannenbaum are with the Department of Electrical ar%( . ylica pl’. ur ' . a ' _g map,
Computer Engineering, University of Minnesota, Minneapolis, MN 55458aving most of the details for the Appendix. In Sections IlI

USA (e-mail: tannenba@ece.umn.edu). , and IV, we describe how the numerical algorithm works on a
R. Kikinis is with the Harvard Medical School, Brigham and Women’st . lated f Thisis b d the finit | t thod

Hospital, Harvard University, Boston, MA 02115 USA. nangulated surrace. This IS based on the Tinite-element metho
Publisher Item Identifier S 0278-0062(99)08509-2. with some key modifications to incorporate the special bound-

0278-0062/99$10.001 1999 IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 16,2010 at 09:51:58 EDT from IEEE Xplore. Restrictions apply.



ANGENENT et al: ON LAPLACE-BELTRAMI OPERATOR 701

ary conditions of our problem. In Section V, we briefly review lll. FINITE ELEMENT APPROXIMATION
the theory of curvature flows and their use in segmentation. In OF CONFORMAL MAPPING

Section V1, we demonstrate our procedure using real brain datg, e previous section we outlined the analytical procedure

and in Section VIl, we make some conclusions and disCUgs fiattening the brain surface via uniformization. We now

further research. want to describe a numerical procedure for carrying this out,
i.e., for solving (1). We now assume thatis a triangulated
surface. Using the notation of the previous section,slet

II. UNIFORMIZATION OF THE BRAIN SURFACE ABC be the triangle in Whose interior the pomﬂies.

In this section, we sketch the mathematical justification of N ,
our brain flattening procedure (see the Appendix for more (?él Approximation ofd/du — «(9/dv))8,
tails). We start with the basic assumption that the brain surfaceEquation (1) is derived in the Appendix under the assump-
may be approximated as a topological sphere. While this is fgin that we are working with smooth functions on smooth
exactly correct (there are some small holes where the ventrictegnifolds. However, in our implementation we will be work-
connect to the outer surface), we can always fill these in byg instead with a triangulated surface and an approximating
using, e.g., morphological dilation and erosion. This will nogpace of functions. In order to solve (1) we therefore need
affect the structures in which we are interested in flattening, i@ find an approximation to its right-hand side. The key is to
particular, the brain hemispheres. L8tC R? represent this interpret(d/du—i(9/9v))é, as a functional on an appropriate
brain model which we assume is an embedded surface (no sefface of functions, in our case, the finite-dimensional space
intersections) of genus zero. In this section, since we will BBL(X) of piecewise linear functions on. What we need to
giving the analytical solution to the uniformization problemknow is how (9/9u — i(9/9v))é, acts on elements of this
we assume that is a smooth manifold. For the finite-elemenfunction space.
method described in the next section, it will be enough to takeFor any functionf smooth in a neighborhood @f one has
it as a triangulated surface. (We refer the reader to [11] for the : 9 9
basic theory of uniformization of Riemann surfaces and to [22] // f<£ — a—)% as
for the solutions of elliptic PDE’s and the Dirichlet problem.) x

Fix a pointp on this surface. Lebt,, denote the Dirac delta - _ // <3 — 3>f6p(w) ds
(impulse) function ap, A, the Laplace—Beltrami operator on s \Ju v

Y\{p}, andi the square root of-1. The Laplace—Beltrami _ <ﬁ _ ﬁ)‘

operator is the generalization of the usual Laplacian operator B Ju v v

to a smooth surface. Let? denote the unit sphere R? and , o ,

let C be the complex plane. and forf € PL(X), this last quantity is completely determined
Recall from the Section | that a conformal equivalence is® the value off at A, B, and C\

one-to-one onto mapping which preserves angles. We can now-1100se thew and thev axes so thatd and B are along

state the following result which provides the analytical basi8€w @xis and the positive axis points toward”. Then one

for our texture mapping procedure. may easily compute that
A conformal equivalence: ¥\ {p} — S?\{north pole} may of fe—fa
be obtained by solving the equation ou 1B — A
af _fe—Jp
dv  ||[C—-D
Az = <3 —i2>6p. (1) . | . _”
du v where D is the orthogonal projection af on AB.

To calculateD, let 8 be such that

Here,« and v are conformal coordinates defined in a neigh- D=A+6(B-A).

borhood ofp. The definition of conformal coordinates and

the derivation of this equation may be found in the ApThen, by the linearity off, fp = fa+6(fs — fa) and since
pendix. Further, in the standard way from complex analyC — D) L (B — A), we have

sis we are identifyingSQ\{n(_)rth pple}_ with th_e _complex (C—A—§(B—A), B— A)=0

plane, say, via stereographic projection. [This is the map-
ping that sends(x, y, z) on the unit sphere to the pointwhere here and throughout this paper we (13eto denote an

(x/(1—=2),y/(1—==%)) in the complex plane.] This resultinner product. Thus
means that we can get the conformal equivalence by solving

a second-order partial differential equation on the surface. 0= w
Fortunately, on a triangulated surface, this may be carried out 1B = Al
using a finite-element technique we will describe below. If we put this all together, we have fgf € PL(Y)

Remark: The mapz is unique up to complex multiplication 5 5
7 —

and translation, that is, any other conformal >\{p} — C // f<_ — >5p ds
is given byz; = Az + B for some constantsl, B € C. s \du v
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_ (9L _JOIN| _ _(fe=Sa _,Joe—Jp g
du v )|, IB—A] Jc-D e
__Ja s e (atb(fs - fa) <7 e
1B—All [IB-Al 1€ =D / R
]
B. Finite Elements . /
We will now briefly outline the finite-element method for g\\ "

finding our approximation te. The heart of the method simply p ""--u,\\ ‘R
involves the solution of a system of linear equations. See [13] T T

for details about this method.
It is a classical fact [22] that = = + ¢y is @ minimizer of
the Dirichlet functional Fig. 1. Triangle geometry.

D(2) ;:1// {|Vz|2+2z<3—i3)5p}ds _ _ o
2))s ou  Ov for each pair of verticed, Q. It is easily seen thabpg #

where Vz is the gradient with respect to the induced metrig. only 'f. P andQ are coqnepted by some edge in the
on 3. triangulation. Thus, the matri® is sparse.

Equivalently, one may show thatsatisfies (1) if and only SupposeP( is an edge t_)e_longing to two triangIeBQR_
if for all smooth test functionsf, we have and P@S. A formula from finite-element theory [13], easily
' verified with basic calculus, says that

f g .0
or
af of where /R is the angle at the verter in the triangle PQR
//z Vz-VfdS= <% — %N : (3) and/S is the angle at the verteS in the trianglePQS. (See
P Fig. 1))

The latter formulation is the key to the finite-element Since
approximation of the solution to (1) on the triangulated surface
¥. We restrict our attention t&L(%) and seek & € PL(X) Z Dpg = Z / Vop Vog = / V1-Vog=0 (7)
such that (3) holds for alf € PL(%). r r

For each vertex” € I, let ¢ be the continuous function . so that the diagonal elementsifmay be found from

such that
er(P) =1 Dpp ==Y Dro. ®)
op(Q) =0, Q # P, Q a vertex P#£Q
¢p is linear on each triangle. (4) Letusalso introduce vectors= (aq) = (9¢q/du(p)) and

b= (bg) = (3pg/0v(p)). Then (5) becomes in matrix terms
Then thesepp form a basis forPL(>) and we seek & of

the form Dr=a ©)
B S Dy= —b. (10)
I vertexof & Where, using our formula fofd/ou — i(9/dv))é, derived

for some vector of complex constaritsy). Further, since (3) in Section Ill-A, we have
is linear in f, it is enough to show that (3) holds whenever

f = ¢¢ for someQ. 0, @¢ 14, B, O

In short, we want to find a vector of complex numbers —1 +i 1-0 ., Q=A
z = (zp), containing one element per vertex, such that for 1B-Al " [[C-E]|

—tbg = 1
all Q aq — ibg +i ' o-nB
3 Ao IB—All ~ll¢— £
> ar [[ Vor-Vogds = 5w -i %2 w). © o
r w v ¢ ) Q =C.
(Il - E
(11)

C. Formulation in Matrix Terms

The formulation (5) is simply a system of linear equations. Summary of Algorithm
in the complex unknowngp.

Accordingly, we introduce the matrikD ;) where So we may summarize the finite-element procedure for the

construction of the flattening mapas follows.

Dpo :/ Vép - Vg dS 1) ComputeDpg, ag, and by using (6), (8), and (11)
above.
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Fig. 2. Three slices of MR brain image with segmentations.

2) Solve the systems of linear equations (9) and (10) to IV. CONSTRUCTION OF THEFLATTENING MAP

obtain the piecewise linear harmonic functions In this section, we give methods for carrying out the finite-

element procedure discussed in the previous section by solvin
r=) wgbe.  ¥=) uotq (9) and ?10). P ’ ’
@ @ Note first that sinceZQ Dpo = 0 for all P, the matrix
and a conformal mapping = z + iy onto the complex P = (Drgq) is singular, and thus we need to show that
plane. solutions to (9) and (10) exist. In addition, we will show that
3) Composer = z + iy with inverse stereographic pro-D enjoys several properties which make the solution of (9)
jection to get a conformal map to the unit spheréand (10) easy to compute numerically.
Specifically, send the point—+ iy to the point(2z/(1+ We remark that ifDz = 0 for some nonzero vectar =
), 2y/(1+7%), 2r2/(1+7%)—1) wherer? = 2 +4%.  (zp), then all the elements af are the same. To demonstrate
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Fig. 3. Three views of the flattened brain surface.

this, supposéx = 0. Then clearly constant and, hence, that al, are equal. We conclude that
the kernel of D is
Z DPQ.TP.TQ =0. (12)
r,Q H:={\1,1,---, D)7 | X e R}.

Further finition of the matri¥po we hav L . .
urther, by definition of the matriDrq we have This is similar to the result from differential geometry,

2 which says that the only harmonic functions on a compact
= D 1 . . . .
/ /Z [Vul”dS IZ;) PRIPLQ (13) connected oriented Riemannian manifold are the constant
functions.
wherew € PL(X) is the function withu(Q) = z¢ for all By construction, D is real, symmetric, and diagonally

vertices(). Equations (12) and (13) together imply thais dominant with positive diagonal entries. This implies tiiat
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Fig. 4. Two more views of the flattened brain surface.

is positive semidefinite and, together with the analysis above Next, for P € {4, B, C}, set
we see thatD mapsH', the orthogonal complement d@{, . = .
bijectively to itself. Thus, the equatioPz = « is solvable if ap +ibp = Z DroZq-
and only ifa € H+, i.e., if 3, ap = 0 and this solution is Q
unique up to the addition of an element Bf. We note that If P ¢ {A, B, C}, we set
the right-hand sides of (9) and (10) are indeeddH. ' ' N -

Since D restricted toH ' is symmetric and positive def- ap +ibp =0
inite,. (9) and (10) are particularly WeI.I suited for_numericaé0 that the computediz,} is a solution of
solution by methods such as the conjugate gradient method.
Although D is singular, this method involves only multipli- > Dpoiq =ap +ibp.
cations by D and addition of vectors if{+ and so, quite Q
literally, solves the equations fdp restricted toH .

If one prefers, alternative methods to solving the syste
of equations can be used to avoid working directly with the Z ap +ibp = Z Z Dpgig
entire singular matrixD. This may be of use if one wishes T P Q
to use a linear algebra package which was not designed to
handle such singular matrices. We present one such method = Z <§QZ DpQ> =0. (15)
here for completeness. We have found that this method and the Q r
one mentioned above are equally effective. On the triangulate
surfaceX, choose a triangld BC. Choose an arbitrary triangle
(A, B, C") C C and solve

Nmote that this, together with (7), gives

qu now make the key observation that the space of vectors

{(fp); fQZOaQ¢{Aa Ba C}aZfPZO}
> Dpoig=0, ia=A iz=Bic=C (14) r

Q is two-dimensional (2-D). It is easy to show th@tp) and
(bp) span this space and that the space also contaip$
for the unknownszp, P ¢ {A, B, C}. and (b,), as defined by (11). Thugap) and (bp) must be
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Fig. 5. Two views of the flattened white matter.

linear combinations ofap) and (bp). Hence, we can solve V. BRIEF REVIEW OF THREE-DIMENSIONAL SEGMENTATION

for a, §, v such that In this section, we very briefly review some previous work

. . on segmentation according to weighted mean curvature flows,
ap =aap +fbp, VP EX as described in [5], [15], and [25]. We follow the treatment
bp =~vap +6bp, VPeEZY. (16) of [15] here.

We write
A. Mean Curvature Surface Evolution

Zpi=xptuyp The key to the segmentation approach is a modification
of the ordinary area functional, and the corresponding gra-
and then the solutionsp andyp to (9) and (10) are given by dient flow. In order to motivate this, we need to briefly
summarize some of the literature on mean curvature motion
xp =aZp+ Pyp, VPeX (17) and the resulting theory of minimal surfaces. For all the
yp =~ip -+ 8ip, VP ey, (18) F;]y concepts in differential geometry, we refer the reader to
. . . Let S: [0, 1] x [0, 1] — R?® denote a compact embedded
We therefore have the following algorithm for Cor’npu“n%urface with (local) coordinatés, v). Let H denote the mean
A curvature, that isH is the arithmetic mean of the principal
1) Solve the system of (14). curvatures. (Recall that at each pointthe surfaceS has
2) Find the constants, 3, v, 6 from (16). two principal curvatures given by the maximum and minimum
3) Calculatexp and yp from (17) and (18). Setr = cynatures of planar curves, which are cut out on the surface
TP+ p-. by planes meeting the surface orthogonallypgtWe let N
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denote the inward unit normal. Set Taking the first variation and using a simple integration by

S S parts argument we see that
Sy = =, v = .

u dv %:_// <@,(¢H—v¢.N)N>dS.

Then the infinitesimal area ofi is given by dt s\ Ot

dS = (|1SullZlISull? = (Sa, S’U>2)1/2 du dv. The corresponding gradient flow is then
as
We make use of the fact that the gradient flow associated to ot (pH — V¢ - N)N. (21)

the area functional for surfaces can be defined in terms of theNotice that Euclidean conformal ares.. is small near an
@

mean curvature. (S_ee [18] and the_references therem_.) M%r(?ge. Thus, we would expect an initial 3-D contour to flow to
precisely, for a family of surfaceS = S(u, v, t) depending

on a parametet, consider the area functional the.potentlal vyell indicated by t_he evolution (21). A method
for implementing a curvature-driven flow, such as that given
Lot by (21), is based on level sets in which the evolving surface is
o 2 2 2\1/2 ’
A() '_/0 /0 (LSull NSl = (Sus Su)7) /2 dudv. embedded as the zero level set of the graph of a function (see
) ) o o ) ~ [19]-[21] for full details). This technique has the advantage
Taking the first variation and using integration by parts, it ig automatically taking into account topological changes in

easy to compute that the evolving surface (splitting and merging) and so has been
dA 9S very useful in snake-based segmentation approaches such as
o —//S <§ HN>d5- the one we are using here. (For the cortical surface which

has the topology of the sphere, no breaking or merging is, of
Therefore, the direction in which the area is shrinking mosburse, necessary.)

rapidly (using only local information) is given by The level-set version of (21) [19]-[21] is given in terms of
as the evolving function®(z, y, z, t) by
5 = HN. (19) U

. A%
— = </)||V\If||d|v<—> + Vo - VU, (22)
Consequently, this flow is very closely connected to the theory ot Vel
of minimal surfaces (surfaces of minimal area with givep constant inflation term’ may be added to give the model
boundary conditions). Vo
B. Three-Dimensional Active Contour Models IVl

We can now formulate our geometric three-dimensional (g'_his inflationary constant may be taken to be either positive
D) contour models based on the mean surface motion. dipward evolution) or negative, in which case it would have an
method is derived by modifying the Euclidean area by qutward or expanding effect. For the level set implementation,

function which depends on the salient image features that W& @ke ¥ to be negative in the interior and positive in the
wish to capture. exterior of the zero level set.

Indeed, let¢: 2 — R be a positive differentiable function
defined on some open subsetRf. The functiong(z, ¥, z) VI. EXPERIMENTAL RESULTS
will play the role of a stopping function. Thus, the function We tested our algorithm by flattening the brain surface
¢(z, y, ) will depend on the given grey-level image. Expliccontained in a 256 256 x 124 MR brain image provided by
itly, the term ¢(z, y, ) may be chosen to be small near ahe Surgical Planning Laboratory of Brigham and Women’s
3-D edge and thus acts to stop the evolution when the 3tspital in Boston. Three slices of the original data set are
contour reaches the edge. For example, as in the 2-D cagigen in Fig. 2. These consist of sagittal T1 weighted gradient

we can choose echo images of a patient with a brain tumor. The three images
1 progress from a close to midline slice to a lateral slice. We
¢ = 1+ ||VG, # 1|2 (20)  chose a brain with a tumor to illustrate the effect of the

flattening on both normal and pathological features in an MR
wherel = I(z, y, z) is the (grey-scale) volumetric image anthrain set.
G, is a Gaussian (smoothing) filter. First, using the segmentation algorithm described in the
What we propose to do is to replace the Euclidean area gigievious section, we found the brain cortical surface, i.e., the
above by a modified (conformal) area dependingéamamely gray matter/CSF interface. This is indicated by the contours
dS,, 1= ¢dS given in Fig. 2. (We also indicate the location of the tumor in
2 ) one of the slices.) Unfortunately, the segmentation algorithm,

Indeed, for a family of surfaces (with parametgr consider itself, does not guarantee that the surface found will be of

the ¢-area functional genus zero. In fact, it may contain numerous minute handles
which arise because the boundary between the cortical surface

Ay(t) = // ds,. and the surrounding fluid, as represented in the data set, may

s not be sharp. We have used a morphologically based method,
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by which these handles can be effectively removed and a
surface of genus zero extracted. This is done in such a way that
the large-scale geometry of the surface is not badly affected.

The VTK Toolkit [23] was used to obtain a triangularization
of the surface, which we proceeded to smooth slightly to
reduce the effects of aliasing. This was done by using the flow
according to mean curvature. This also allowed us to obtain a
measure of the convexity and concavity of points on the brain
surface, by considering the mean curvature vector.

Once the surface was smoothed, we used the method
described in the previous sections to find a flattening map
to the plane and then composed this map with a map from
the plane to the unit sphere, using the inverse stereographic
projection described at the end of Section IlI-D. This compo-
sition gives us a bijective conformal map from the surface to
the sphere. Fig. 6. Outline of flattened region.

Note that it is not practical to view the planar mapping di-

rectly in its entirety, because stereographic projection stretches ) )
areas near the north pole too much to be useful. In fact,'§ COmPosed of 430000 triangular faces, yet the flattening

is not possible to map a sphere, a sphere with a small C@'ﬁcedure Fook_less tha_n 6 min using a Sun Ultrasparc 10. I_=or
removed, or any other similarly shaped surface to the planeStfaces with triangles in the tens of thousands, the flattening
any way, without major distortion. However, smaller surfacBfocedure takes only a few seconds. This is primarily due
patches may be mapped to the plane with a more reasondBidhe fact that the heart of our procedure involves only the
amount of distortion, and in fact the best (in terms of lengfPution of two sparse systems of linear equations.

distortion) mapping to the plane from a sphere with a geodesic't 1S generally not possible to map a surface with noncon-
disk removed is known. For an accessible treatment of sorff@nt Gaussian curvature to the plane or sphere in a way which
of the relevant mathematics and results, see [17]. In practiPEeServes both angles and areas. Such a mapping would be an
we have not found the distortion of area near the north pole gMetry and thus curvature-preserving, by Gauss'’ celebrated
be a problem in solving the linear equations for our flattenin'€0rema Egregiurtsee [9]). However, a conformal mapping,

map. The method seems to be stable across a wide variet?8'd & similarity in the small, acts on small areas essentially
surface shapes and varying fineness of triangulations.

y scaling them by some factor. This scaling factor will vary
After flattening the brain surface, we used mean curvature Q4€" different parts of the surface and naturally this variance
color corresponding points on the two surfaces (the lighter tia! tend to be larger over larger areas. Further, we have found
point the higher the mean curvature on the brain surface). THt the scaling factor tends to vary most over regions which
provided us with an effective way to see how the fIattenin((::)Ontaln large variances in the Gaussian C“fYat“fe-
process acted on the gyral lines of the brain surface. This is" Order to quantify the effect of the mapping on areas, we
shown in Figs. 3 and 4, which provide several views of th omput_ed stat|_st|cs_f0r f[he area scaling factors_of tnan_gles in
cortical surface and the corresponding areas on the sphé & reg|on,outllnled n Fig. 6..The surfacg was first decimated
Note the tumor on the right parietal lobe visible in the verteySINd VTK’s decimation algorithm (resulting in a surface patch
view. It is interesting to see how the conformality of thé)f 3162 triangles), and then scaled so that the corresponding

mapping from the brain surface to the sphere results insgherlcal area was the same in total as the original cortical

flattened image which is locally very similar in appearanc%un‘ace area. Fig. 7 shows graphs of these scale factors as a

to the original histogram and a cumulative count. As one can see from these

Next, we tested our process on the more highly convolutgﬁaphs' one pays a price in area distortion in order to perfectly

surface, which is defined by the boundary between the wh eserve the angles. The mean scaling ratio was 0.95, the

and gray matter within the brain. To exiract this boundan&ax'mum 6.4 and thg minimum 0.09. The standard deviation
we used a combination of the method based on smoothi 85 0.65, measured in units of area.
posterior probabilities as described in [27] and the segmenta-
tion method described in the previous section. (See also [14]
and [29]-[31] and the references therein for other approachesn this paper, we described a general method based on a
to brain segmentation.) Once the surface was obtained, dliscretization of the Laplace—Beltrami operator for flattening
flattening method was applied exactly as it was for the cortical surface in a manner which preserves the local geometry.
surface. The result of this process is shown in Fig. 5. Note thEte approach can be carried out using a finite-element method
much of the white matter surface is hidden within its deephich takes into account the special boundary conditions. We
convolutions, but that such areas on the sphere are clealyo illustrated the technique on the brain surface and white
visible. matter of an MR brain data set.

One of the advantages of the flattening method we are predn addition to the functional MRI mentioned at the begin-
senting is its speed. The white matter surface shown in Fignig of this paper, we have several other applications in mind.

VIl. CONCLUSIONS
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Histogram of Triangle Counts vs. Scaling Ratio
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Fig. 7. Graphs of triangle scaling.

We point out that inverting the flattening map allows us easily As is well known, a number of pathologies have been
to establish orthogonal coordinates on the surface. Further, #ssociated with deformations of brain structures. We are very
method allows us to find north and south poles on a highhopeful that these techniques will be useful in quantitatively
convoluted surface such as the brain, giving an alternatidescribing such pathologies. Finally, the conformal technique
method to that discussed in [3]. may also be utilized for automatic texture mapping.
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One of the benefits of using conformal mappings of this
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Proof: From the above argument, we need only prove

type is that the mathematical theory predicts that such bijeexistence. But finding a solution of (24) is possible (see [22])
tive angle-preserving mappings exist, in contrast to isomettiecause the right-hand side integrates out to zero

mappings. If a quasi-length or area-preserving mapping is
desired, we believe that the conformal mapping technique is a
very reasonable starting point, since it effectively unfolds the
surface, preserving local geometry and avoiding the problem

g .0

(m-ia )Wl =0

of nonbijectivity from triangle flipping, which can occur within direct analogy to our discussion on the solvability of

some other approaches. The basic idea is that it seemsytg = .

be easier to maintain bijectivity while minimizing length or
area distortion than it is to produce bijectivity and minimal
distortion simultaneously.
[1]
MATHEMATICAL APPENDIX

In this section, we outline the derivation of the partial[z]
differential equation (1). (See also [1], [11], and [22] and thg3]
references therein.)

We first choose conformal coordinatés, v) on £ nearp,
with « = v = 0 atp. (Conformal coordinates, v are such that
the metric at the point is of the formds? = A?(p)(du®+dv?.) 5]
We can always insure that at the particular pgin\(p) = 1.

One can show that such conformal coordinates always exif
[10].

Putw = u+iv. Sincez is one to one, it follows that it has a [7]

simple pole ap, and thus a Laurent series expansion given by

(8]

(4]

A
z(w) E+B+Cw+Dw2~~~.

Since all terms except the first in this Laurent series are smoo[gl
(harmonic) atw = 0, applying A to both sides yields

Az = AA<1>.
w

We need only findz up to a constant multiple, so taking[12]
A=1/2x

[20]

[11]

[13]
Ar— L A(l) [14]
27
—iA — —L log |w] (5]
ou
_ 1 _ .9 [16]
( 22 ) log ||
1/0 9
‘—<au - a_) (2méy( [17)
o ) [18]
p(w)
<8u [19]

where we have used the fact tay2r)log |w| is the funda- [5q
mental solution for the operatak. Sincel/w € Li 1,.(C),

i.e., is locally integrable, this computation is also valid in thle]
distributional sense, i.e., in the space of distributid’$C)
[22].
We may now prove the following. (22]
Theorem 1: The conformal mapo: X\{p} — S*\{north [23]
pole} = C may be obtained by solving the equation 24,
g .0

O
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