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On the Laplace–Beltrami Operator and
Brain Surface Flattening

Sigurd Angenent, Steven Haker, Allen Tannenbaum,* and Ron Kikinis

Abstract—In this paper, using certain conformal mappings
from uniformization theory, we give an explicit method for
flattening the brain surface in a way which preserves angles. From
a triangulated surface representation of the cortex, we indicate
how the procedure may be implemented using finite elements.
Further, we show how the geometry of the brain surface may be
studied using this approach.

Index Terms— Brain flattening, functional MRI, harmonic
maps, segmentation.

I. INTRODUCTION

RECENTLY, a number of techniques have been proposed
to obtain a flattened representation of the cortical surface

(see, e.g., [6]–[8], [16], and [28] and the references therein).
Flattening the brain surface has uses in many areas, including
functional magnetic resonance imaging. Indeed, since it is
important to visualize functional magnetic resonance imaging
data for neural activity within the three dimensional folds of
the brain, flattened representations have become an increasing
important approach to such visualization techniques.

A basic assumption is that the topology of the brain surface
is the same as that of a crumpled sheet and, in particular,
does not have any holes or self intersections. Our approach
to flattening such a surface is based on the exploitation of a
certain fact from the theory of Riemann surfaces from complex
analysis and geometry, namely, that a surface of genus zero
(no handles) without any holes or self intersections can be
mapped conformally onto the sphere and any local portion
thereof onto a disc. In this way, the brain surface may be
flattened. The mapping is conformal in the sense that angles
are preserved. It is also bijective (onto and one to one) and
thus there is no problem with triangles flipping or overlapping
and no cuts need be made on the surface.
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Moreover, one can explicitly write down how the metric is
transformed and thus areas and the geodesics as well. Specif-
ically, the elements of the first fundamental form
are transformed as with depending on the
point of the surface. (See [9] and [10] for all the details.) For
this reason, conformal mappings are often described as being
similarities in the small. In short, the mapping can be used
to obtain an atlas of the brain surface in a straightforward
canonical manner.

We should note that our approach to brain flattening is quite
different from the previous works cited above, which typically
consider local area or length preserving deformations. For
example, in the nice approaches of [7] and [16], the authors
fit a parameterized deformable surface whose topology is
mappable to a sphere. Then, it is possible to represent the brain
surface on a planar map by using spherical coordinates. Work
has also been done on quasi-isometrics and quasi-conformal
flattenings of the brain surface (see, e.g., [4] and [24]). In these
interesting approaches, the authors start from a triangulated
representation of the given surface and typically employ a
relaxation method to discretely minimize an energy functional.
Thus they cannot guarantee bijectivity and, in particular,
cannot guarantee that triangles do not flip. In our case, our
initial intuition is continuous, i.e., we explicitly construct the
bijective conformal equivalence on a continuous model of the
surface and only then move to the discrete implementation. If
a quasi-length or area-preserving mapping is desired, then our
conformal mapping technique is a good starting point, since it
efficiently unfolds the surface while locally preserving shape.

In our work, the key observation is that the flattening
function may be obtained as the solution of a second-order
elliptic partial differential equation (PDE) on the surface to
be flattened. For triangulated surfaces, there exist powerful
reliable finite-element procedures which can be employed to
numerically approximate the flattening function. Preliminary
results along these lines were reported in the technical report
[1]. In our case, we may use the fast segmentation methods
of [15], [25], and [26] to represent the cortical surface as a
triangulated surface to which we apply our procedure.

The outline of this paper is as follows. In Section II, we
sketch the analytical procedure to find the flattening map,
leaving most of the details for the Appendix. In Sections III
and IV, we describe how the numerical algorithm works on a
triangulated surface. This is based on the finite-element method
with some key modifications to incorporate the special bound-
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ary conditions of our problem. In Section V, we briefly review
the theory of curvature flows and their use in segmentation. In
Section VI, we demonstrate our procedure using real brain data
and in Section VII, we make some conclusions and discuss
further research.

II. UNIFORMIZATION OF THE BRAIN SURFACE

In this section, we sketch the mathematical justification of
our brain flattening procedure (see the Appendix for more de-
tails). We start with the basic assumption that the brain surface
may be approximated as a topological sphere. While this is not
exactly correct (there are some small holes where the ventricles
connect to the outer surface), we can always fill these in by
using, e.g., morphological dilation and erosion. This will not
affect the structures in which we are interested in flattening, in
particular, the brain hemispheres. Let represent this
brain model which we assume is an embedded surface (no self-
intersections) of genus zero. In this section, since we will be
giving the analytical solution to the uniformization problem,
we assume that is a smooth manifold. For the finite-element
method described in the next section, it will be enough to take
it as a triangulated surface. (We refer the reader to [11] for the
basic theory of uniformization of Riemann surfaces and to [22]
for the solutions of elliptic PDE’s and the Dirichlet problem.)
Fix a point on this surface. Let denote the Dirac delta
(impulse) function at , the Laplace–Beltrami operator on

, and the square root of . The Laplace–Beltrami
operator is the generalization of the usual Laplacian operator
to a smooth surface. Let denote the unit sphere in and
let be the complex plane.

Recall from the Section I that a conformal equivalence is a
one-to-one onto mapping which preserves angles. We can now
state the following result which provides the analytical basis
for our texture mapping procedure.

A conformal equivalence: {north pole} may
be obtained by solving the equation

(1)

Here, and are conformal coordinates defined in a neigh-
borhood of . The definition of conformal coordinates and
the derivation of this equation may be found in the Ap-
pendix. Further, in the standard way from complex analy-
sis we are identifying {north pole} with the complex
plane, say, via stereographic projection. [This is the map-
ping that sends on the unit sphere to the point

in the complex plane.] This result
means that we can get the conformal equivalence by solving
a second-order partial differential equation on the surface.
Fortunately, on a triangulated surface, this may be carried out
using a finite-element technique we will describe below.

Remark: The map is unique up to complex multiplication
and translation, that is, any other conformal:
is given by for some constants .

III. FINITE ELEMENT APPROXIMATION

OF CONFORMAL MAPPING

In the previous section we outlined the analytical procedure
for flattening the brain surface via uniformization. We now
want to describe a numerical procedure for carrying this out,
i.e., for solving (1). We now assume that is a triangulated
surface. Using the notation of the previous section, let

be the triangle in whose interior the pointlies.

A. Approximation of

Equation (1) is derived in the Appendix under the assump-
tion that we are working with smooth functions on smooth
manifolds. However, in our implementation we will be work-
ing instead with a triangulated surface and an approximating
space of functions. In order to solve (1) we therefore need
to find an approximation to its right-hand side. The key is to
interpret as a functional on an appropriate
space of functions, in our case, the finite-dimensional space

of piecewise linear functions on. What we need to
know is how acts on elements of this
function space.

For any function smooth in a neighborhood of, one has

and for , this last quantity is completely determined
by the value of at and .

Choose the and the axes so that and are along
the axis and the positive axis points toward . Then one
may easily compute that

where is the orthogonal projection of on .
To calculate , let be such that

Then, by the linearity of and since
, we have

where here and throughout this paper we useto denote an
inner product. Thus

If we put this all together, we have for
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B. Finite Elements

We will now briefly outline the finite-element method for
finding our approximation to. The heart of the method simply
involves the solution of a system of linear equations. See [13]
for details about this method.

It is a classical fact [22] that is a minimizer of
the Dirichlet functional

where is the gradient with respect to the induced metric
on .

Equivalently, one may show thatsatisfies (1) if and only
if for all smooth test functions , we have

(2)

or

(3)

The latter formulation is the key to the finite-element
approximation of the solution to (1) on the triangulated surface

. We restrict our attention to and seek a
such that (3) holds for all .

For each vertex , let be the continuous function
such that

a vertex

is linear on each triangle. (4)

Then these form a basis for and we seek a of
the form

for some vector of complex constants . Further, since (3)
is linear in , it is enough to show that (3) holds whenever

for some .
In short, we want to find a vector of complex numbers

, containing one element per vertex, such that for
all

(5)

C. Formulation in Matrix Terms

The formulation (5) is simply a system of linear equations
in the complex unknowns .

Accordingly, we introduce the matrix where

Fig. 1. Triangle geometry.

for each pair of vertices . It is easily seen that
only if and are connected by some edge in the

triangulation. Thus, the matrix is sparse.
Suppose is an edge belonging to two triangles,

and . A formula from finite-element theory [13], easily
verified with basic calculus, says that

(6)

where is the angle at the vertex in the triangle
and is the angle at the vertex in the triangle . (See
Fig. 1.)

Since

(7)

we see that the diagonal elements ofmay be found from

(8)

Let us also introduce vectors and
. Then (5) becomes in matrix terms

(9)

(10)

Where, using our formula for derived
in Section III-A, we have

(11)

D. Summary of Algorithm

So we may summarize the finite-element procedure for the
construction of the flattening mapas follows.

1) Compute and using (6), (8), and (11)
above.
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Fig. 2. Three slices of MR brain image with segmentations.

2) Solve the systems of linear equations (9) and (10) to
obtain the piecewise linear harmonic functions

and a conformal mapping onto the complex
plane.

3) Compose with inverse stereographic pro-
jection to get a conformal map to the unit sphere.
Specifically, send the point to the point

where .

IV. CONSTRUCTION OF THEFLATTENING MAP

In this section, we give methods for carrying out the finite-
element procedure discussed in the previous section by solving
(9) and (10).

Note first that since for all , the matrix
is singular, and thus we need to show that

solutions to (9) and (10) exist. In addition, we will show that
enjoys several properties which make the solution of (9)

and (10) easy to compute numerically.
We remark that if for some nonzero vector

, then all the elements of are the same. To demonstrate
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Fig. 3. Three views of the flattened brain surface.

this, suppose . Then clearly

(12)

Further, by definition of the matrix we have

(13)

where is the function with for all
vertices . Equations (12) and (13) together imply thatis

constant and, hence, that all are equal. We conclude that
the kernel of is

This is similar to the result from differential geometry,
which says that the only harmonic functions on a compact
connected oriented Riemannian manifold are the constant
functions.

By construction, is real, symmetric, and diagonally
dominant with positive diagonal entries. This implies that
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Fig. 4. Two more views of the flattened brain surface.

is positive semidefinite and, together with the analysis above,
we see that maps , the orthogonal complement of
bijectively to itself. Thus, the equation is solvable if
and only if , i.e., if and this solution is
unique up to the addition of an element of. We note that
the right-hand sides of (9) and (10) are indeed in .

Since restricted to is symmetric and positive def-
inite, (9) and (10) are particularly well suited for numerical
solution by methods such as the conjugate gradient method.
Although is singular, this method involves only multipli-
cations by and addition of vectors in and so, quite
literally, solves the equations for restricted to .

If one prefers, alternative methods to solving the system
of equations can be used to avoid working directly with the
entire singular matrix . This may be of use if one wishes
to use a linear algebra package which was not designed to
handle such singular matrices. We present one such method
here for completeness. We have found that this method and the
one mentioned above are equally effective. On the triangulated
surface , choose a triangle . Choose an arbitrary triangle

and solve

(14)

for the unknowns .

Next, for set

If , we set

so that the computed is a solution of

Note that this, together with (7), gives

(15)

We now make the key observation that the space of vectors

is two-dimensional (2-D). It is easy to show that and
span this space and that the space also contains

and , as defined by (11). Thus, and must be
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Fig. 5. Two views of the flattened white matter.

linear combinations of and . Hence, we can solve
for such that

(16)

We write

and then the solutions and to (9) and (10) are given by

(17)

(18)

We therefore have the following algorithm for computing
.

1) Solve the system of (14).
2) Find the constants from (16).
3) Calculate and from (17) and (18). Set

V. BRIEF REVIEW OF THREE-DIMENSIONAL SEGMENTATION

In this section, we very briefly review some previous work
on segmentation according to weighted mean curvature flows,
as described in [5], [15], and [25]. We follow the treatment
of [15] here.

A. Mean Curvature Surface Evolution

The key to the segmentation approach is a modification
of the ordinary area functional, and the corresponding gra-
dient flow. In order to motivate this, we need to briefly
summarize some of the literature on mean curvature motion
and the resulting theory of minimal surfaces. For all the
key concepts in differential geometry, we refer the reader to
[9].

Let : denote a compact embedded
surface with (local) coordinates . Let denote the mean
curvature, that is, is the arithmetic mean of the principal
curvatures. (Recall that at each pointthe surface has
two principal curvatures given by the maximum and minimum
curvatures of planar curves, which are cut out on the surface
by planes meeting the surface orthogonally at.) We let
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denote the inward unit normal. Set

Then the infinitesimal area on is given by

We make use of the fact that the gradient flow associated to
the area functional for surfaces can be defined in terms of the
mean curvature. (See [18] and the references therein.) More
precisely, for a family of surfaces depending
on a parameter, consider the area functional

Taking the first variation and using integration by parts, it is
easy to compute that

Therefore, the direction in which the area is shrinking most
rapidly (using only local information) is given by

(19)

Consequently, this flow is very closely connected to the theory
of minimal surfaces (surfaces of minimal area with given
boundary conditions).

B. Three-Dimensional Active Contour Models

We can now formulate our geometric three-dimensional (3-
D) contour models based on the mean surface motion. Our
method is derived by modifying the Euclidean area by a
function which depends on the salient image features that we
wish to capture.

Indeed, let : be a positive differentiable function
defined on some open subset of . The function
will play the role of a stopping function. Thus, the function

will depend on the given grey-level image. Explic-
itly, the term may be chosen to be small near a
3-D edge and thus acts to stop the evolution when the 3-D
contour reaches the edge. For example, as in the 2-D case,
we can choose

(20)

where is the (grey-scale) volumetric image and
is a Gaussian (smoothing) filter.

What we propose to do is to replace the Euclidean area given
above by a modified (conformal) area depending onnamely

Indeed, for a family of surfaces (with parameter), consider
the -area functional

Taking the first variation and using a simple integration by
parts argument we see that

The corresponding gradient flow is then

(21)

Notice that Euclidean conformal area is small near an
edge. Thus, we would expect an initial 3-D contour to flow to
the potential well indicated by the evolution (21). A method
for implementing a curvature-driven flow, such as that given
by (21), is based on level sets in which the evolving surface is
embedded as the zero level set of the graph of a function (see
[19]–[21] for full details). This technique has the advantage
of automatically taking into account topological changes in
the evolving surface (splitting and merging) and so has been
very useful in snake-based segmentation approaches such as
the one we are using here. (For the cortical surface which
has the topology of the sphere, no breaking or merging is, of
course, necessary.)

The level-set version of (21) [19]–[21] is given in terms of
the evolving function by

div (22)

A constant inflation term may be added to give the model

div (23)

This inflationary constant may be taken to be either positive
(inward evolution) or negative, in which case it would have an
outward or expanding effect. For the level set implementation,
we take to be negative in the interior and positive in the
exterior of the zero level set.

VI. EXPERIMENTAL RESULTS

We tested our algorithm by flattening the brain surface
contained in a 256 256 124 MR brain image provided by
the Surgical Planning Laboratory of Brigham and Women’s
Hospital in Boston. Three slices of the original data set are
given in Fig. 2. These consist of sagittal T1 weighted gradient
echo images of a patient with a brain tumor. The three images
progress from a close to midline slice to a lateral slice. We
chose a brain with a tumor to illustrate the effect of the
flattening on both normal and pathological features in an MR
brain set.

First, using the segmentation algorithm described in the
previous section, we found the brain cortical surface, i.e., the
gray matter/CSF interface. This is indicated by the contours
given in Fig. 2. (We also indicate the location of the tumor in
one of the slices.) Unfortunately, the segmentation algorithm,
itself, does not guarantee that the surface found will be of
genus zero. In fact, it may contain numerous minute handles
which arise because the boundary between the cortical surface
and the surrounding fluid, as represented in the data set, may
not be sharp. We have used a morphologically based method,
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by which these handles can be effectively removed and a
surface of genus zero extracted. This is done in such a way that
the large-scale geometry of the surface is not badly affected.

The VTK Toolkit [23] was used to obtain a triangularization
of the surface, which we proceeded to smooth slightly to
reduce the effects of aliasing. This was done by using the flow
according to mean curvature. This also allowed us to obtain a
measure of the convexity and concavity of points on the brain
surface, by considering the mean curvature vector.

Once the surface was smoothed, we used the method
described in the previous sections to find a flattening map
to the plane and then composed this map with a map from
the plane to the unit sphere, using the inverse stereographic
projection described at the end of Section III-D. This compo-
sition gives us a bijective conformal map from the surface to
the sphere.

Note that it is not practical to view the planar mapping di-
rectly in its entirety, because stereographic projection stretches
areas near the north pole too much to be useful. In fact, it
is not possible to map a sphere, a sphere with a small cap
removed, or any other similarly shaped surface to the plane in
any way, without major distortion. However, smaller surface
patches may be mapped to the plane with a more reasonable
amount of distortion, and in fact the best (in terms of length
distortion) mapping to the plane from a sphere with a geodesic
disk removed is known. For an accessible treatment of some
of the relevant mathematics and results, see [17]. In practice,
we have not found the distortion of area near the north pole to
be a problem in solving the linear equations for our flattening
map. The method seems to be stable across a wide variety of
surface shapes and varying fineness of triangulations.

After flattening the brain surface, we used mean curvature to
color corresponding points on the two surfaces (the lighter the
point the higher the mean curvature on the brain surface). This
provided us with an effective way to see how the flattening
process acted on the gyral lines of the brain surface. This is
shown in Figs. 3 and 4, which provide several views of the
cortical surface and the corresponding areas on the sphere.
Note the tumor on the right parietal lobe visible in the vertex
view. It is interesting to see how the conformality of the
mapping from the brain surface to the sphere results in a
flattened image which is locally very similar in appearance
to the original.

Next, we tested our process on the more highly convoluted
surface, which is defined by the boundary between the white
and gray matter within the brain. To extract this boundary,
we used a combination of the method based on smoothing
posterior probabilities as described in [27] and the segmenta-
tion method described in the previous section. (See also [14]
and [29]–[31] and the references therein for other approaches
to brain segmentation.) Once the surface was obtained, our
flattening method was applied exactly as it was for the cortical
surface. The result of this process is shown in Fig. 5. Note that
much of the white matter surface is hidden within its deep
convolutions, but that such areas on the sphere are clearly
visible.

One of the advantages of the flattening method we are pre-
senting is its speed. The white matter surface shown in Fig. 5

Fig. 6. Outline of flattened region.

is composed of 430 000 triangular faces, yet the flattening
procedure took less than 6 min using a Sun Ultrasparc 10. For
surfaces with triangles in the tens of thousands, the flattening
procedure takes only a few seconds. This is primarily due
to the fact that the heart of our procedure involves only the
solution of two sparse systems of linear equations.

It is generally not possible to map a surface with noncon-
stant Gaussian curvature to the plane or sphere in a way which
preserves both angles and areas. Such a mapping would be an
isometry and thus curvature-preserving, by Gauss’ celebrated
Theorema Egregium(see [9]). However, a conformal mapping,
being a similarity in the small, acts on small areas essentially
by scaling them by some factor. This scaling factor will vary
over different parts of the surface and naturally this variance
will tend to be larger over larger areas. Further, we have found
that the scaling factor tends to vary most over regions which
contain large variances in the Gaussian curvature.

In order to quantify the effect of the mapping on areas, we
computed statistics for the area scaling factors of triangles in
the region outlined in Fig. 6. The surface was first decimated
using VTK’s decimation algorithm (resulting in a surface patch
of 3162 triangles), and then scaled so that the corresponding
spherical area was the same in total as the original cortical
surface area. Fig. 7 shows graphs of these scale factors as a
histogram and a cumulative count. As one can see from these
graphs, one pays a price in area distortion in order to perfectly
preserve the angles. The mean scaling ratio was 0.95, the
maximum 6.4 and the minimum 0.09. The standard deviation
was 0.65, measured in units of area.

VII. CONCLUSIONS

In this paper, we described a general method based on a
discretization of the Laplace–Beltrami operator for flattening
a surface in a manner which preserves the local geometry.
The approach can be carried out using a finite-element method
which takes into account the special boundary conditions. We
also illustrated the technique on the brain surface and white
matter of an MR brain data set.

In addition to the functional MRI mentioned at the begin-
ning of this paper, we have several other applications in mind.
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Fig. 7. Graphs of triangle scaling.

We point out that inverting the flattening map allows us easily
to establish orthogonal coordinates on the surface. Further, the
method allows us to find north and south poles on a highly
convoluted surface such as the brain, giving an alternative
method to that discussed in [3].

As is well known, a number of pathologies have been
associated with deformations of brain structures. We are very
hopeful that these techniques will be useful in quantitatively
describing such pathologies. Finally, the conformal technique
may also be utilized for automatic texture mapping.
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One of the benefits of using conformal mappings of this
type is that the mathematical theory predicts that such bijec-
tive angle-preserving mappings exist, in contrast to isometric
mappings. If a quasi-length or area-preserving mapping is
desired, we believe that the conformal mapping technique is a
very reasonable starting point, since it effectively unfolds the
surface, preserving local geometry and avoiding the problem
of nonbijectivity from triangle flipping, which can occur with
some other approaches. The basic idea is that it seems to
be easier to maintain bijectivity while minimizing length or
area distortion than it is to produce bijectivity and minimal
distortion simultaneously.

MATHEMATICAL APPENDIX

In this section, we outline the derivation of the partial
differential equation (1). (See also [1], [11], and [22] and the
references therein.)

We first choose conformal coordinates on near ,
with at . (Conformal coordinates are such that
the metric at the point is of the form .)
We can always insure that at the particular point
One can show that such conformal coordinates always exist
[10].

Put . Since is one to one, it follows that it has a
simple pole at , and thus a Laurent series expansion given by

Since all terms except the first in this Laurent series are smooth
(harmonic) at , applying to both sides yields

We need only find up to a constant multiple, so taking

where we have used the fact that is the funda-
mental solution for the operator . Since ,
i.e., is locally integrable, this computation is also valid in the
distributional sense, i.e., in the space of distributions
[22].

We may now prove the following.
Theorem 1: The conformal map : north

pole may be obtained by solving the equation

(24)

Proof: From the above argument, we need only prove
existence. But finding a solution of (24) is possible (see [22])
because the right-hand side integrates out to zero

in direct analogy to our discussion on the solvability of
.
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