86 research outputs found

    Quantum shape effects on Zeeman splittings in semiconductor nanostructures

    Full text link
    We develop a general method to calculate Zeeman splittings of electrons and holes in semiconductor nanostructures within the tight-binding framework. The calculation is carried out in the electron-hole picture and is extensible to the excitonic calculation by including the electron-hole Coulomb interaction. The method is suitable for the investigation of quantum shape effects and the anisotropy of the g-factors. Numerical results for CdSe and CdTe nanostructures are presented

    Continuous recording of the transport properties oa a superconducting tape using an AC magnetic field technique

    Get PDF
    The transport properties of superconductors are commonly characterized by means of a 4-probe measuring technique and the critical current is determined on a certain criterion for the electrical field. An alternative method to investigate the transport properties is to measure the magnetic response of a superconductor in a changing magnetic field. This magnetic technique has the interesting advantage that it can be used to investigate long lengths of (insulated) conductor. A detailed analysis is made to develop a reliable measuring procedure for this new test facility. The magnetic response of a superconductor is modeled in a description for an infinitely long tape with a rectangular cross-section and an arbitrary voltage-current relation. The calculated magnetic profiles, in space and time, are compared with experimental results at 77 K. It is demonstrated that the magnetic signal can be used to monitor the quality of a long length of tape (>500 m) with a high accuracy. Additionally it is shown that the shape of the voltage-current relation can be reconstructed based on the frequency dependence of the magnetic respons

    The negative Bogoliubov dispersion in exciton-polariton condensates

    Full text link
    Bogoliubov's theory states that self-interaction effects in Bose-Einstein condensates produce a characteristic linear dispersion at low momenta. One of the curious features of Bogoliubov's theory is that the new quasiparticles in the system are linear combinations of creation and destruction operators of the bosons. In exciton-polariton condensates, this gives the possibility of directly observing the negative branch of the Bogoliubov dispersion in the photoluminescence (PL) emission. Here we theoretically examine the PL spectra of exciton-polariton condensates taking into account of reservoir effects. At sufficiently high excitation densities, the negative dispersion becomes visible. We also discuss the possibility for relaxation oscillations to occur under conditions of strong reservoir coupling. This is found to give a secondary mechanism for making the negative branch visible

    Secular variation of activity in comets 2P/Encke and 9P/Tempel 1

    Get PDF
    We compare production rates of H20 derived from International Ultraviolet Explorer (IUE) spectra from multiple apparitions of 2 comets, 2P/Encke and 9P/Tempel 1, whose orbits are in near-resonance with that of the Earth. Since model-induced errors are primarily a function of observing geometry, the close geometrical matches afforded by the resonance condition results in the cancellation of such errors when taking ratios of production rates. Giving careful attention to the variation of model parameters with solar activity, we find marginal evidence of change in 2P/Encke: a 1-sigma pre-perihelion decrease averaging 4%/revolution over 4 apparitions from 1980-1994, and a 1-sigma post-perihelion increase of 16%/revolution for 2 successive apparitions in 1984 and 1987. We find for 9P/Tempel 1, however, a 7-sigma decrease of 29%/revolution over 3 apparitions from 1983-1994, even after correcting for a tracking problem which made the fluxes systematically low. We speculate on a possible association of the character of long-term brightness variations with physical properties of the nucleus, and discuss implications for future research

    Few-Qubit lasing in circuit QED

    Full text link
    Motivated by recent experiments, which demonstrated lasing and cooling of the electromagnetic modes in a resonator coupled to a superconducting qubit, we describe the specific mechanisms creating the population inversion, and we study the spectral properties of these systems in the lasing state. Different levels of the theoretical description, i.e., the semi-classical and the semi-quantum approximation, as well as an analysis based on the full Liouville equation are compared. We extend the usual quantum optics description to account for strong qubit-resonator coupling and include the effects of low-frequency noise. Beyond the lasing transition we find for a single- or few-qubit system the phase diffusion strength to grow with the coupling strength, which in turn deteriorates the lasing state.Comment: Prepared for the proceedings of the Nobel Symposium 2009, Qubits for future quantum computers, May 2009 in Goeteborg, Sweden. Published versio

    Two-Dimensional Synthetic Aperture Radiometry over Land Surface During Soil Moisture Experiment in 2003 (SMEX03)

    Get PDF
    Microwave radiometry at low frequencies (L-band, approx. 1.4 GHz) has been known as an optimal solution for remote sensing of soil moisture. However, the antenna size required to achieve an appropriate resolution from space has limited the development of spaceborne L-band radiometers. This problem can be addressed by interferometric technology called aperture synthesis. The Soil Moisture and Ocean Salinity (SMOS) mission will apply this technique to monitor global-scale surface parameters in the near future. The first airborne experiment using an aircraft prototype of this approach, the Two-Dimensional Synthetic Aperture Radiometer (2D-STAR), was performed in the Soil Moisture Experiment in 2003 (SMEX03). The L-band brightness temperature data acquired in Alabama by the 2DSTAR was compared with ground-based measurements of soil moisture and with C-band data collected by the Polarimetric Scanning Radiometer (PSR). Our results demonstrate a good response of the 2D-STAR brightness temperature to changes in surface wetness, both in agricultural and forest lands. The behavior of the horizontally polarized brightness temperature data with increasing view-angle over the forest area was noticeably different than over bare soil. The results from the comparison of 2D-STAR and PSR indicate a better response of the 2D-STAR to the surface wetness under both wet and dry conditions. Our results have important implications for the performance of the future SMOS mission

    Superradiant Decay of Cyclotron Resonance of Two-Dimensional Electron Gases

    Get PDF
    We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn's theorem.Comment: 5 pages, 4 figure

    OMPS Limb Profiler Instrument Performance Assessment

    Get PDF
    Following the successful launch of the Ozone Mapping and Profiler Suite (OMPS) aboard the Suomi National Polar-orbiting Partnership (SNPP) spacecraft, the NASA OMPS Limb team began an evaluation of instrument and data product performance. The focus of this paper is the instrument performance in relation to the original design criteria. Performance that is closer to expectations increases the likelihood that limb scatter measurements by SNPP OMPS and successor instruments can form the basis for accurate long-term monitoring of ozone vertical profiles. The team finds that the Limb instrument operates mostly as designed and basic performance meets or exceeds the original design criteria. Internally scattered stray light and sensor pointing knowledge are two design challenges with the potential to seriously degrade performance. A thorough prelaunch characterization of stray light supports software corrections that are accurate to within 1% in radiances up to 60 km for the wavelengths used in deriving ozone. Residual stray light errors at 1000nm, which is useful in retrievals of stratospheric aerosols, currently exceed 10%. Height registration errors in the range of 1 km to 2 km have been observed that cannot be fully explained by known error sources. An unexpected thermal sensitivity of the sensor also causes wavelengths and pointing to shift each orbit in the northern hemisphere. Spectral shifts of as much as 0.5nm in the ultraviolet and 5 nm in the visible, and up to 0.3 km shifts in registered height, must be corrected in ground processing

    Release 2 data products from the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler

    Get PDF
    The OMPS Limb Profiler (LP) was launched on board the NASA Suomi National Polar-orbiting Partnership (SNPP) satellite in October 2011. OMPS-LP is a limb-scattering hyperspectral sensor that provides ozone profiling capability at 1.5 km vertical resolution from cloud top to 60 km altitude. The use of three parallel slits allows global coverage in approximately four days. We have recently completed a full reprocessing of all LP data products, designated as Release 2, that improves the accuracy and quality of these products. Level 1 gridded radiance (L1G) changes include intra-orbit and seasonal correction of variations in wavelength registration, revised static and intra-orbit tangent height adjustments, and simplified pixel selection from multiple images. Ozone profile retrieval changes include removal of the explicit aerosol correction, exclusion of channels contaminated by stratospheric OH emission, a revised instrument noise characterization, improved synthetic solar spectrum, improved pressure and temperature ancillary data, and a revised ozone climatology. Release 2 data products also include aerosol extinction coefficient profiles derived with the prelaunch retrieval algorithm. Our evaluation of OMPS LP Release 2 data quality is good. Zonal average ozone profile comparisons with Aura MLS data typically show good agreement, within 5-10% over the altitude range 20-50 km between 60 deg S and 60 deg N. The aerosol profiles agree well with concurrent satellite measurements such as CALIPSO and OSIRIS, and clearly detect exceptional events such as volcanic eruptions and the Chelyabinsk bolide in February 2013
    • …
    corecore