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Introduction: Breast cancer staging with sentinel lymph node biopsy relies on the use of 

radioisotopes, which limits the availability of the procedure worldwide. The use of a magnetic 

nanoparticle tracer and a handheld magnetometer provides a radiation-free alternative, which 

was recently evaluated in two clinical trials. The hydrodynamic particle size of the used magnetic 

tracer differs substantially from the radioisotope tracer and could therefore benefit from optimi-

zation. The aim of this study was to assess the performance of three different-sized magnetic 

nanoparticle tracers for sentinel lymph node biopsy within an in vivo porcine model.

Materials and methods: Sentinel lymph node biopsy was performed within a validated porcine 

model using three magnetic nanoparticle tracers, approved for use in humans (ferumoxytol, 

with hydrodynamic diameter d
H
 =32 nm; Sienna+®, d

H
 =59 nm; and ferumoxide, d

H
 =111 nm),  

and a handheld magnetometer. Magnetometer counts (transcutaneous and ex vivo), iron quan-

tification (vibrating sample magnetometry), and histopathological assessments were performed 

on all ex vivo nodes.

Results: Transcutaneous “hotspots” were present in 12/12 cases within 30 minutes of injec-

tion for the 59 nm tracer, compared to 7/12 for the 32 nm tracer and 8/12 for the 111 nm  

tracer, at the same time point. Ex vivo magnetometer counts were significantly greater for  

the 59 nm tracer than for the other tracers. Significantly more nodes per basin were excised for the 

32 nm tracer compared to other tracers, indicating poor retention of the 32 nm tracer. Using the 

59 nm tracer resulted in a significantly higher iron accumulation compared to the 32 nm tracer.

Conclusion: The 59 nm tracer demonstrated rapid lymphatic uptake, retention in the first 

nodes reached, and accumulation in high concentration, making it the most suitable tracer for 

intraoperative sentinel lymph node localization.

Keywords: superparamagnetic iron oxide, breast cancer, magnetic tracer, ferumoxytol, feru-

moxide, Sienna+®

Introduction
Breast cancer is the most common cancer among women, with approximately 

1.67 million new patients diagnosed annually worldwide and accounting for 25% of 

all cancer cases.1 Breast cancer predominantly spreads via the lymphatic system to 

locoregional lymph nodes, meaning that the status of these lymph nodes is important 

for staging of the disease and determining prognosis.2–4

The sentinel lymph nodes (SLNs) are defined as the first draining nodes from a 

primary tumor and, therefore, are most likely to be the first site of lymphatic metastasis. 

Sentinel lymph node biopsy (SLNB) with the “combined technique” of radioisotope 

and blue dye is the standard method for determining axillary staging in early-stage 

breast cancer patients with a clinically and radiologically negative axilla.3,5–9
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The combined technique is performed by injecting a 

radioactive tracer (99mTc nanocolloid) and blue dye intersti-

tially, either peritumorally or periareolarly. The tracers are 

distributed through the lymphatic system, to the draining 

SLNs. The tracers are then detected within the SLNs by the 

surgeon using a handheld scintillation counter (gamma probe) 

and/or visually. The gamma probe is first used to transcutane-

ously localize the SLNs and determine the optimal incision 

site. Postincision both the blue dye and gamma probe guide 

the surgeon to the SLNs. After identification, the SLNs are 

removed and sent for histopathological examination. With 

an identification rate of 96% and a false-negative rate of 

5%–10%, it is an effective procedure with low morbidity.3

Although the currently used technique performs well, it 

has drawbacks. The use of radioisotopes is subject to stringent 

regulations on training of staff and handling and disposal 

of radioactive material. Furthermore, the 6 hour half-life 

of 99mTc limits theater scheduling. Most importantly, many 

hospitals in the world do not have access to radioisotopes. 

Consequently, only approximately 60% of the patients in the 

western world and negligible numbers in the rest of the world 

have access to SLNB.10 This has led to the search for other 

techniques, not reliant on the use of radioisotopes.11

Recently the use of a magnetic tracer and a handheld 

magnetometer was evaluated against the “combined tech-

nique” as a radiation-free alternative in two separate clini-

cal trials.12,13 A superparamagnetic iron oxide (SPIO) tracer 

was administered interstitially in the breast, followed by 

identification of the SLNs with a handheld magnetometer. 

The magnetic technique was found to be noninferior to the 

“combined technique” with identification rates of 94.4%– 

98.0%.12,13 However, there was a discordance in SLNs 

identified between the magnetic and combined techniques 

that ranged between 2.0%13 and 6.9%,12 – potentially lead-

ing to false-negative staging with the magnetic technique.  

A smaller study by Shiozawa et al14 used a similar SPIO 

tracer and different magnetometer, comparing SPIO and blue 

dye only – no radioisotope was used. They found an SLN 

identification rate of 90% for the SPIO in combination with 

blue dye, with a discordance rate of 16.7% and demonstrated 

the viability of the technique for performing SLNB in the 

absence of radioisotopes.

Physical and chemical properties including shape, coat-

ing material, and particle size influence the distribution 

of nanoparticles in vivo.15,16 99mTc nanocolloid has a mean 

particle size of approximately 8 nm,17,18 while the particle 

size of the magnetic tracer used for the magnetic technique 

(Sienna+®, Endomagnetics Ltd, UK) is much larger with a 

mean size of approximately 60 nm. Because particle size is 

the most important property influencing lymphatic uptake 

and lymph node retention,19 the identification of different 

SLNs by the two techniques could possibly arise due to 

differences in particle size of the radioisotope and magnetic 

tracer. In order to optimize the clinical application of the 

magnetic technique for SLNB, we evaluated the performance 

of three different-sized SPIO-based formulations – licensed 

for human use – within an in vivo porcine model.

Materials and methods
Tracers/dynamic light scattering
Three SPIO-based licensed formulations with a broad range 

in particle size were used as magnetic tracers in this study. 

Feraheme®/Rienso® (Takeda, Japan) consists of ferumoxytol, 

30 mg Fe/mL and is an Food and Drug Administration–approved 

drug used for the intravenous treatment of iron deficiency anemia 

in adult patients with chronic kidney disease. The particles have 

a magnetic core of maghemite (γ-Fe
2
O

3
) surrounded by a poly-

glucose sorbitol carboxymethylether coating. Sienna+® contains 

27 mg Fe/mL and is a CE-marked magnetic tracer intended to 

mark and locate SLNs in cancer patients. The magnetic core 

consists of magnetite and maghemite (Fe
3
O

4
/γ-Fe

2
O

3
), with a 

carboxydextran coating. Finally, Endorem®/Feridex® (Guerbet, 

France) consisting of ferumoxide, 11.2 mg Fe/mL is licensed 

as a magnetic resonance imaging (MRI) contrast agent for liver 

imaging, with a magnetite core coated with dextran.

All magnetic tracers were diluted to the same iron con-

centration of 11.2 mg Fe/mL to facilitate comparison of per-

formance. Sterile water for injection and a pipette were used 

to prepare the dilutions. The hydrodynamic particle size of 

all tracers was determined by dynamic light scattering using 

a Zetasizer Nano ZS (Malvern Instruments, UK).

Animals and surgery
Ethical permission for animal experimentation was granted 

by the Research Institute against Digestive Cancer (IRCAD) 

Ethics Review Board (Strasbourg, France) under reference 

number 38.2012.01.047. A previously developed and vali-

dated porcine model that closely resembles human lymphatic 

drainage was used to evaluate the performance of the dif-

ferent magnetic tracers for SLNB.20 At the IRCAD Institute 

(Strasbourg, France), after induction of anesthesia, mini-pigs 

were injected with one of the three different magnetic tracers 

subcutaneously bilaterally into the areolas of the third ingui-

nal mammary glands. A total of 0.5 mL (5.6 mg Fe) of each 

diluted tracer was injected on each side, in six mini-pigs, for 

each tracer (18 mini-pigs in total; 36 injections).
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Transcutaneous magnetometer measurements using a 

handheld magnetometer (SentiMAG®, Endomagnetics Ltd, 

UK) were undertaken in the inguinal region, where the drain-

ing lymph nodes are located. Measurements were performed 

at 5 minutes, 10 minutes, 15 minutes, 30 minutes, 45 minutes, 

60 minutes, and 240 minutes after administration of the tracer. 

The sites at which uptake of SPIO was successfully detected 

(hotspots) were marked using a permanent marker.

Bilateral SLNB of the inguinal region was undertaken 

4 hours after injection. The incision was made at the site 

of the “magnetic hotspot”. If no “hotspot” was located, a 

blind incision was made in the inguinal region. Postincision, 

the handheld magnetometer was used to identify the SLNs 

in  vivo. After identification, lymph nodes demonstrating 

SPIO uptake were removed, and the ex vivo magnetometer 

count was recorded. Lymph nodes with a magnetometer 

count higher than 10% of the “hottest node” were defined 

as SLNs, as was used in the SentiMAG Multicentre Trial,12 

and in accordance with standard clinical practice.21

After completion of the SLNB procedure, a groin node 

clearance was performed. Ex vivo magnetometer measure-

ments were performed on the groin node clearances to 

determine if there were any further SLNs that were missed 

initially. All resected lymph nodes were fixed in formalin and 

sent to the University of Twente (Enschede, The Netherlands) 

for iron quantification and subsequently to King’s College 

London (London, UK) for histopathological evaluation.

Quantification of iron content (vibrating 
sample magnetometry)
The quantification of magnetic tracer in the excised and 

formalin-fixed sentinel lymph nodes was performed using 

vibrating sample magnetometry (VSM) on a Physical Prop-

erties Measuring system (Quantum Design Inc., San Diego, 

CA, USA). An applied magnetic field of 4.0 T was used to 

bring the magnetic iron oxide nanoparticles to saturation. 

The amount of magnetic tracer in the lymph nodes was deter-

mined by comparing the obtained amplitude of the saturation 

magnetization to known calibration samples of each of the 

tracers. The iron content was reported as the mass of iron (Fe) 

in the node, present in the form of maghemite or magnetite. 

VSM allows quantification with 0.5 μg Fe accuracy and is 

nondestructive, which allows subsequent histopathological 

analysis of the same samples.22

Histopathology
The nodes were then transferred intact to King’s College 

London (London, UK) where they were embedded in wax, 

thinly sliced, and stained with hematoxylin and eosin and 

with Perl’s Prussian blue for iron. Iron staining within each 

node was graded using a previously validated 5-point grading 

scale (0 = none, 1 = minimal, 2 = mild, 3 = moderate, and 

4 = marked),20 by an experienced pathologist and a second 

observer (SP, BA, or MA).

Statistical analysis
We conducted a two-sided test (alpha =0.05) expecting a 

difference of 50 µg (standard deviation [SD] =30) in iron 

content readings between each magnetic tracer. When 

performing a total of 12 procedures (six mini-pigs) for 

each magnetic tracer, these 36 procedures provided us 

with a power of 82% to detect this difference. The relation-

ship between continuous variables was calculated using 

Pearson’s correlation coefficient, associations between 

categorical data using the χ2 test, and associations between 

categorical and continuous variables using analyses of 

variance. All statistical analyses were performed using 

Statistical Analysis Systems (SAS) release 9.3 (SAS Insti-

tute, Cary, NC).

Results
Dynamic light scattering
The Z-averaged hydrodynamic diameter of the magnetic trac-

ers ferumoxytol, Sienna+®, and ferumoxide was determined 

to be 32 nm, 59 nm, and 111 nm, respectively. When the size 

distributions were evaluated graphically (Figure 1), signifi-

cant intratracer heterogeneity in particle size was observed. 

This is reflected by a polydispersity index of 0.179, 0.181, 

and 0.266 for the 32 nm tracer, 59 nm tracer, and 111 nm 

tracer, respectively.

Surgery
A total of 36 SLNB procedures were performed in 18 mini-

pigs, and SLN identification was successful in all cases. 

In vivo magnetic hotspots from the draining inguinal lymph 

nodes were successfully identified transcutaneously prior 

to surgical excision using the handheld magnetometer in all 

cases (12/12) for the 32 nm tracer and the 59 nm tracer and 

in all but one case (11/12) for the 111 nm tracer (240 min-

utes after injection). The number of procedures in which a 

transcutaneous hotspot was successfully identified increased 

with time after injection for all three tracers (Figure 2). There 

were 7/12 and 8/12 successfully identified magnetic hotspots 

after 30 minutes using the 32 nm tracer and 111 nm tracer, 

respectively, compared to the 59 nm tracer with magnetic 

hotspots in all cases (12/12).
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Figure 1 Particle size distribution of the three magnetic tracers by dynamic light scattering. 
Note: The particle size (logarithmic scale) is shown against the intensity.
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Figure 2 Relationship between the time after injection of the magnetic tracer and successful identification of transcutaneous hotspot.

A total of 77 SLNs were identified with the handheld 

magnetometer during surgery and subsequently excised. 

Thirty-five SLNs were identified using the 32 nm tracer 

(mean 2.9, SD 1.2), 20 SLNs with the 111 nm tracer (mean 

1.7, SD 0.9), and 22 SLNs (mean 1.8, SD 0.8) with the 59 

nm tracer (Figure 3A). A statistically significant difference 

between the tracer used, and the number of SLNs identified 

was observed overall (P=0.0099) (Figure 3A). More nodes 

per basin were excised with the 32 nm tracer compared to the 

111 nm tracer (P,0.001) and the 59 nm tracer (P=0.03).

The distribution of magnetometer counts demonstrated 

a statistically significant difference among the three tracers 

overall (P,0.0001) (Figure 3B). Multicomparisons demon-

strated that ex vivo magnetometer counts were significantly 

higher with the 59 nm tracer compared to the other two 

tracers (P,0.05).

Quantification of iron content (VSM)
The iron content of the ex vivo SLNs was recorded using 

VSM (Figure 3C). Multiple comparisons between the 

tracers demonstrated a significant higher iron content for the 

59 nm tracer compared to the 32 nm tracer (P,0.05) only.  

The mean iron content of the SLNs was determined to be  

106 (SD 70) μg, 179 (SD 159) μg, and 265 (SD 206) μg for 

the 32 nm tracer, 111 nm tracer, and 59 nm tracer, respec-

tively. A linear relationship between the iron content of the 

ex vivo SLNs and the handheld magnetometer counts was 

observed for all tracers (Figure 4) – 32 nm tracer (r=0.93; 

P,0.001), 111 nm tracer (r=0.95; P,0.001), and 59 nm 

tracer (r=0.93; P,0.001). Figure 4 demonstrates a difference 

in the sensitivity of the magnetometer for the different tracers. 

The magnetometer count is 2.8 times higher for the 59 nm 

tracer compared to the same amount of iron for the 111 nm 

tracer and 1.3 times higher for the 32 nm tracer compared to 

the 111 nm tracer.

Histopathology
The iron was distributed predominantly in the subcapsular 

space peripherally within the cortex, subcapsular space, and 

sinuses (Figure 5). The iron deposition from the 111 nm 
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Figure 3 Boxplots of the relationship between the magnetic tracer and: (A) the number of excised sentinel lymph nodes during surgery; (B) the ex vivo magnetometer 
counts of the excised sentinel lymph nodes; (C) the iron content measured of the excised sentinel lymph nodes by vibrating sample magnetometry. 
Notes: The circle symbols represent outliers; the diamond symbols represent the mean value.
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Figure 5 Iron distribution within nodes on histopathology using Perl’s Prussian blue staining for iron and haematoxyline & eosine.
Notes: Magnification 2×, with inserts at 20× magnification. (A) Node containing the 111-nm tracer; (B) node containing the 59 nm tracer; (C) node containing the 32 nm tracer.

tracer was mostly confined to macrophages within the nodes 

(Figure 5A), whereas the 59 nm tracer demonstrated more 

free iron granules (particularly peripherally) (Figure 5B). 

Only very sparse, small islands of iron within macrophages 

were visible for the 32 nm tracer (Figure 5C). There was 

a significant difference in the grade of the iron content of 

excised SLNs between the three different tracers overall 

(P,0.0001) (Figure 6). The amount of iron deposition was 

significantly greater with the 111 nm tracer and 59 nm tracer 

(P,0.05) compared to the 32 nm tracer.

Discussion
Rapid uptake of a magnetic tracer after interstitial injection is 

important to maximize transcutaneous hotspot detection and 

enable injection in the theater suite, facilitating theater sched-

uling. Transcutaneous identification of hotspots was possible 

in most procedures with the 59 nm tracer within 10 minutes of 

the injection and in all except one procedure (with the 111 nm 

tracer) within 240 minutes. Within 30 minutes of injection, 

all hotspots were already identifiable using the 59 nm tracer. 

The greater sensitivity of the magnetometer for the 59 nm 

tracer for a given quantity of iron compared to the other two 

tracers (Figure 4) facilitates hotspot detection.

Discoloration of the skin was present at the injection site 

using all tracers, but this was not quantified during this study. 

Our animal model did not allow to evaluate whether the skin 

discoloration would fade away over time or persist as a tat-

too. Although superficial administration of an SPIO tracer 
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can result in skin tattooing, the current clinical studies using 

SPIO have also not reported adequate follow-up data to fully 

quantify this.12–14 However, any tattooing is anticipated to be 

temporary rather than permanent but may persist for several 

months – similar to that expected for blue dye.23

Any tracer used for SLNB must be retained by the SLNs 

and not pass on to higher echelon nodes in order to avoid 

excessive excision of normal nodes. Within this study, a sta-

tistically significantly greater number of nodes were excised 

using the 32 nm tracer compared to the other two tracers. 

This is a distinct disadvantage of the smaller particle-sized 

magnetic tracer. It suggests that rather than being retained 

within the SLN after entering through the afferent duct, it 

passes through the efferent system and onto higher echelon 

nodes. This is reflected by the small islands of sparsely 

distributed iron within the nodes after the administration of  

the 32 nm tracer on histopathology (Figure 5C). By applying 

the “10% rule” and excising those nodes with only 10% of the 

ex vivo count of the hottest excised node using radioisotope, 

Martin et al24 demonstrated that a mean SLN harvest of 1.96 

nodes was associated with a false-negative rate of 5.8%. In 

the SentiMAG Multicentre Trial using the 59 nm tracer, 

2.02 nodes were excised per procedure using the magnetic 

technique. Excising more than two SLNs during sentinel node 

biopsy is not proven to be beneficial except after primary 

systemic therapy.25 Our data suggest that the small-sized 32 

nm tracer would result in removal of an excessive number 

of normal nodes.

In addition to retention, the accumulation of magnetic 

tracer within the SLNs is essential for intraoperative identifi-

cation. The 59 nm tracer demonstrated statistically significant 

higher ex vivo magnetometer counts compared to the other 

two tracers, but only a statistically significant greater iron 

content over the 32 nm tracer. This is explained by the higher 

sensitivity of the used magnetometer for the 59 nm tracer 

compared to the other two tracers. The higher sensitivity for 

the 59 nm tracer is due to differences in magnetic properties 

of the tracers, arising from differences in size and material 

of the magnetic cores.26

By injecting the magnetic tracer 24 hours before surgery, 

one may be able to improve the iron uptake by the SLNs 

and thereby improve the performance of a tracer. However, 

extending the period between injection and surgery could 

allow adverse SPIO migration to higher echelon nodes 

beyond the SLN. Therefore, this is likely only suitable for 

the larger 111 nm tracer – within this context. However, to 

optimize the time between injection and surgery for each 

tracer, formal assessment of individual tracers for SLNB 

when injected at different times before surgery is needed.

The variation in the accumulation of iron within nodes, 

between different tracers was demonstrated on histopathol-

ogy. There was significantly less iron deposition in nodes 

from the 32 nm tracer compared to the other tracers, with 

only sparse, small islands of iron derived from the 32 nm 

tracer being observed in the nodes. There was no difference 

in the grading of nodes between the 59 nm tracer and the 

111 nm tracer on histopathology. In both cases, the iron was 

distributed in the subcapsular space and sinuses of nodes, 

consistent with previous histopathological studies.20,27 How-

ever, the 111 nm tracer was found to be deposited mainly 

within macrophages – demonstrating its ability to activate 

the mononuclear phagocytic system – compared to the 59 nm 

tracer, which although demonstrating phagocytosis within the 

node also displayed extensive free iron granules peripherally. 

These two processes of activating the mononuclear phago-

cytic system and free iron granule deposition facilitate iron 

accumulation and hence SLN identification using a handheld 

magnetometer.

Different studies have recently evaluated the influence 

of magnetic nanoparticle size on lymphatic uptake in rodent 

models.28–30 Tracers with particle sizes ranging from 4 to 

1,000 nm were used in these studies. The purpose of these 

studies was to optimize tracer uptake in the SLNs to facilitate 

preoperative localization with MRI, rather than intraoperative 

detection. Mori et al30 used 50 nm, 100 nm, 200 nm, and 

1,000 nm–sized particles and concluded that particles of 

200 nm and larger are not suitable in view of lack of uptake 

within 24 hours. Iida et al28 compared the performance of  

4 nm, 8 nm, and 20 nm citrate-coated nanoparticles and con-

cluded that the 20 nm particles were best retained in the SLNs 

and accumulated in the highest concentration. However, the 

20 nm tracer was the largest used, and therefore, it is possible 

Figure 6 Number of excised sentinel lymph nodes (SLNs) per grade of iron 
distribution, for the three different magnetic tracers.
Note: Grade 0 = none, Grade 1 = minimal, Grade 2 = mild, Grade 3 = moderate, 
and Grade 4 = marked.
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that uptake could be further optimized by increasing the 

particle size. Kjellman et al29 used monodisperse magnetic 

nanoparticles with a polyethylene glycol coating with sizes 

of 15  nm, 27  nm, and 57  nm. The 15 nm particles were 

observed to accumulate in the SLNs the fastest and in the 

highest concentrations. A 15 nm polyethylene glycol–coated 

tracer approved for use in humans is currently not available 

and was not used in our study. Therefore, the efficiency of 

the 15 nm tracer cannot be compared to our results.

During the course of the animal experimentation, there 

were no signs of adverse events developing within the ani-

mals as a consequence of the magnetic tracer administration. 

When magnetic tracers are used as MRI contrast agents, 

doses of 25–100 mg are typically administered. Animal stud-

ies have demonstrated no acute or subacute toxicity when  

150 times this dose has been administered.31 Consequently, 

iron overload would not be possible within this model due 

to the small amounts of iron injected (5.6 mg).

In this study we evaluated the performance in SLNB of 

three magnetic tracers approved for human use. However, 

only the 59 nm tracer is currently CE-marked for the pur-

pose of SLNB in Europe. The 111 nm and 32 nm tracers 

are licensed as an MRI contrast agent and an intravenous 

treatment of iron deficiency anemia, respectively. Apart from 

the dilution of the tracers to standardize iron concentrations, 

no changes were made to the constituents to facilitate the 

translation of the results to clinical practice. The formulation 

of the tracers is very similar; all are aqueous suspensions 

of magnetic nanoparticles in water, with a pH level ranging 

from 5 to 9. The most remarkable difference between the 

tracers is the particle size; however, differences in coating 

and other constituents are also evident. The coating of the 

111 nm tracer and 59 nm tracer are both dextran based 

(dextran and carboxydextran, respectively); however, a 

polyglucose sorbitol carboxymethylether coating is used 

in the 32 nm tracer. Although the coating is known to be a 

factor influencing in vivo nanoparticle distribution, particle 

size was demonstrated to be the most significant factor for 

interstitially administered tracers.19,29,32–34 The poor per-

formance of the polyethylene glycol–coated 32 nm tracer 

compared to the other tracers is therefore likely explained by 

a combination of the particle size distribution and the coat-

ing. The observed differences between the dextran-coated 

tracers are most likely explained by the different particle 

size distributions of these tracers.

Conclusion
Currently, the 59 nm tracer is the best performing magnetic 

nanoparticle tracer, approved for human use, in SLNB with 

a handheld magnetometer. The particles of the 59 nm tracer 

distribute rapidly from the injection site to the SLNs, allowing 

transcutaneous localization within 30  minutes in contrast 

to the 240 minutes for the 32 nm tracer and 111 nm tracer. 

The particles of the 59 nm tracer are retained in the first 

nodes reached in contrast to the particles of the 32 nm tracer. 

Finally, the particles accumulate in high concentrations, 

facilitating intraoperative localization. The rapid distribu-

tion, retention in the first nodes reached, and accumulation in 

high concentration make the 59 nm tracer the most suitable 

magnetic tracer for SLNB.
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