418 research outputs found

    Mars Tumbleweed: FY2003 Conceptual Design Assessment

    Get PDF
    NASA LaRC is studying concepts for a new type of Mars exploration vehicle that would be propelled by the wind. Known as the Mars Tumbleweed, it would derive mobility through use of the Martian surface winds. Tumbleweeds could conceivably travel greater distances, cover larger areas of the surface, and provide access to areas inaccessible by conventional vehicles. They would be lightweight and relatively inexpensive, allowing a multiple vehicle network to be deployed on a single mission. Tumbleweeds would be equipped with sensors for conducting science and serve as scouts searching broad areas to identify specific locations for follow-on investigation by other explorers. An extensive assessment of LaRC Tumbleweed concepts was conducted in FY03, including refinement of science mission scenarios, definition of supporting subsystems (structures, power, communications), testing in wind tunnels, and development of a dynamic simulation capability

    The Role of Parvalbumin-positive Interneurons in Auditory Steady-State Response Deficits in Schizophrenia

    Get PDF
    © The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Despite an increasing body of evidence demonstrating subcellular alterations in parvalbumin-positive (PV+) interneurons in schizophrenia, their functional consequences remain elusive. Since PV+ interneurons are involved in the generation of fast cortical rhythms, these changes have been hypothesized to contribute to well-established alterations of beta and gamma range oscillations in patients suffering from schizophrenia. However, the precise role of these alterations and the role of different subtypes of PV+ interneurons is still unclear. Here we used a computational model of auditory steady-state response (ASSR) deficits in schizophrenia. We investigated the differential effects of decelerated synaptic dynamics, caused by subcellular alterations at two subtypes of PV+ interneurons: basket cells and chandelier cells. Our simulations suggest that subcellular alterations at basket cell synapses rather than chandelier cell synapses are the main contributor to these deficits. Particularly, basket cells might serve as target for innovative therapeutic interventions aiming at reversing the oscillatory deficits.Peer reviewe

    Synthetic Culture Media Evaluated for the Detection of Coliform Bacteria in Milk, Cheese and Egg Melange

    Full text link
    Simple synthetic culture media of liquid and solid form (X broth and X agar) were tested for selective isolation of coliform bacteria. Selectivity is based on the ability of coliform bacteria to grow when the minimal medium contains simple inorganic substances as nitrogen and carbon supply. Selectivity of the media was tested by inoculation of pure cultures of different microbes belonging to the genera of Staphylococcus, Bacillus and Pseudomonas and the family Enterobacteriaceae and was found to be complete in this range. The comparative investigation of milk, camembert cheese and egg melange samples in the traditional and new media proved good applicability of X broth and X agar for an effective and selective detection of coliform bacteria. When testing pasteurized milk samples, X agar detected coliforms in significantly higher counts than violet red-bile-lactose agar

    Cannabinoid-mediated short-term plasticity in hippocampus

    Get PDF
    Endocannabinoids modulate both excitatory and inhibitory neurotransmission in hippocampus via activation of pre-synaptic cannabinoid receptors. Here, we present a model for cannabinoid mediated short-term depression of excitation (DSE) based on our recently developed model for the equivalent phenomenon of suppressing inhibition (DSI). Furthermore, we derive a simplified formulation of the calcium-mediated endocannabinoid synthesis that underlies short-term modulation of neurotransmission in hippocampus. The simplified model describes cannabinoid-mediated short-term modulation of both hippocampal inhibition and excitation and is ideally suited for large network studies. Moreover, the implementation of the simplified DSI/DSE model provides predictions on how both phenomena are modulated by the magnitude of the pre-synaptic cell's activity. In addition we demonstrate the role of DSE in shaping the post-synaptic cell's firing behaviour qualitatively and quantitatively in dependence on eCB availability and the pre-synaptic cell's activity. Finally, we explore under which conditions the combination of DSI and DSE can temporarily shift the fine balance between excitation and inhibition. This highlights a mechanism by which eCBs might act in a neuro-protective manner during high neural activity

    The effects of acute serotonin challenge on executive planning in patients with obsessive-compulsive disorder (OCD), their first-degree relatives, and healthy controls

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s00213-020-05597-7.Rationale: OCD is characterized by executive function impairment and by clinical responsivity to selective serotonin reuptake inhibitors (SSRIs). Executive planning deficits constitute a candidate endophenotype for OCD. It is not known whether this endophenotype is responsive to acute serotonin manipulation. Objective: To investigate the effects of acute SSRI administration on executive function in patients with OCD, first-degree relatives of patients with OCD and healthy controls. Methods: A randomized double-blind crossover study assessed the effects of single dose escitalopram (20mg) and placebo on executive planning in 24 patients with OCD, 13 clinically unaffected first-degree relatives of patients with OCD and 28 healthy controls. Performance on a Tower of London task measuring executive planning was assessed 4 hours after oral administration of the pharmacological challenge / placebo, and compared across and within groups using a mixed model ANOVA. Results: On the outcome measure of interest, i.e. the mean number of choices to obtain the correct solution, there was a marginally significant effect of group (F(2, 59)=3.1; p=0.052), with patients (Least square [LS] mean: 1.43; Standard Error [SE]: 0.06; 95% confidence interval [CI], 1.31-1.55) and their relatives (LS mean: 1.46; SE: 0.08; 95% CI, 1.30-1.62) performing worse than matched healthy controls (LS mean: 1.26; SE: 0.05; 95% CI, 1.15-1.37) on placebo. There was a trend towards a significant group x treatment interaction (F(2, 58)=2.8, p=0.069), with post hoc tests showing (i) patients (p=0.009; LS mean difference: 0.23; SE: 0.08) and relatives (p=0.03; LS mean difference: 0.22; SE: 0.10) were more impaired compared to controls and (ii) escitalopram was associated with improved executive planning in patients with OCD (p=0.013; LS mean difference: 0.1; SE: 0.04), but not other groups (both p>0.1; controls: LS mean difference: -0.03; SE: 0.04; relatives: LS mean difference: 0.02; SE: 0.05). Conclusion: Our findings are consistent with a view that there is impaired executive planning in OCD, and that this constitutes a behavioral endophenotype. In patients with OCD, but not in relatives, acute SSRI administration ameliorated this deficit. Further investigation is needed to understand common and differential involvement of neurochemical systems in patients with OCD and their relatives.Peer reviewe

    Effects of the fatty acid amide hydrolase inhibitor URB597 on coping behavior under challenging conditions in mice

    Get PDF
    RATIONALE: Recent evidence suggests that in addition to controlling emotional behavior in general, endocannabinoid signaling is engaged in shaping behavioral responses to challenges. This important function of endocannabinoids is still poorly understood. OBJECTIVES: Here we investigated the impact of blockade of fatty acid amide hydrolase (FAAH), the degrading enzyme of anandamide on behavioral responses induced by challenges of different intensity. METHODS: Mice treated with FAAH inhibitor URB597 were either manually restrained on their backs (back test) or received foot-shocks. RESULTS: The behavior of mice showed bimodal distribution in the back test: they either predominantly showed escape attempts or equally distributed time between passivity and escape. URB597 increased escapes in animals with low escape scores. No effects were noticed in mice showing high escape scores, which is likely due to a ceiling effect. We hypothesized that stronger stressors would wash out individual differences in coping; therefore, we exposed mice to foot-shocks that decreased locomotion and increased freezing in all mice. URB597 ameliorated both responses. The re-exposure of mice to the shock cage 14 days later without delivering shocks or treatment was followed by reduced and fragmented sleep as shown by electrophysiological recordings. Surprisingly, sleep was more disturbed after the reminder than after shocks in rats receiving vehicle before foot-shocks. These reminder-induced disturbances were abolished by URB597 administered before shocks. CONCLUSIONS: These findings suggest that FAAH blockade has an important role in the selection of behavioral responses under challenging conditions and-judging from its long-term effects-that it influences the cognitive appraisal of the challenge

    Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gamma-band oscillations recorded from human electrophysiological recordings, which may be associated with perceptual binding and neuronal connectivity, have been shown to be altered in people with autism. Transient auditory gamma-band responses, however, have not yet been investigated in autism or in the first-degree relatives of persons with the autism.</p> <p>Methods</p> <p>We measured transient evoked and induced magnetic gamma-band power and inter-trial phase-locking consistency in the magnetoencephalographic recordings of 16 parents of children with autism, 11 adults with autism and 16 control participants. Source space projection was used to separate left and right hemisphere transient gamma-band measures of power and phase-locking.</p> <p>Results</p> <p>Induced gamma-power at 40 Hz was significantly higher in the parent and autism groups than in controls, while evoked gamma-band power was reduced compared to controls. The phase-locking factor, a measure of phase consistency of neuronal responses with external stimuli, was significantly lower in the subjects with autism and the autism parent group, potentially explaining the difference between the evoked and induced power results.</p> <p>Conclusion</p> <p>These findings, especially in first degree relatives, suggest that gamma-band phase consistency and changes in induced versus induced power may be potentially useful endophenotypes for autism, particularly given emerging molecular mechanisms concerning the generation of gamma-band signals.</p

    Hippocampal Deletion of BDNF Gene Attenuates Gamma Oscillations in Area CA1 by Up-Regulating 5-HT3 Receptor

    Get PDF
    Background: Pyramidal neurons in the hippocampal area CA3 express high levels of BDNF, but how this BDNF contributes to oscillatory properties of hippocampus is unknown. Methodology/Principal Findings: Here we examined carbachol-induced gamma oscillations in hippocampal slices lacking BDNF gene in the area CA3. The power of oscillations was reduced in the hippocampal area CA1, which coincided with increases in the expression and activity of 5-HT3 receptor. Pharmacological block of this receptor partially restored power of gamma oscillations in slices from KO mice, but had no effect in slices from WT mice. Conclusion/Significance: These data suggest that BDNF facilitates gamma oscillations in the hippocampus by attenuating signaling through 5-HT3 receptor. Thus, BDNF modulates hippocampal oscillations through serotonergic system
    corecore