404 research outputs found
Radiation environment along the INTEGRAL orbit measured with the IREM monitor
The INTEGRAL Radiation Environment Monitor (IREM) is a payload supporting
instrument on board the INTEGRAL satellite. The monitor continually measures
electron and proton fluxes along the orbit and provides this information to the
spacecraft on board data handler. The mission alert system broadcasts it to the
payload instruments enabling them to react accordingly to the current radiation
level. Additionally, the IREM conducts its autonomous research mapping the
Earth radiation environment for the space weather program. Its scientific data
are available for further analysis almost without delay.Comment: 5 pages, 7 figures, accepted for publication in A+A letter
Gamma-Ray Burst Polarization: Limits from RHESSI Measurements
Using the RHESSI satellite as a Compton polarimeter, a recent study claimed
that the prompt emission of GRB021206 was almost fully linearly polarized. This
was challenged by a subsequent reanalysis. We present an novel approach,
applying our method to the same data. We identify Compton scattering candidates
by carefully filtering events in energy, time, and scattering geometry. Our
polarization search is based on time dependent scattering rates in
perpendicular directions, thus optimally excluding systematic errors. We
perform simulations to obtain the instrument's polarimetric sensitivity, and
these simulations include photon polarization. For GRB021206, we formally find
a linear polarization degree of 41% (+57% -44%), concluding that the data
quality is insufficient to constrain the polarization degree in this case. We
further applied our analysis to GRB030519B and found again a null result.Comment: 39 pages, 11 figures, accepted for publication by the Astrophysical
Journa
Spectral Analysis of GRBs Measured by RHESSI
The Ge spectrometer of the RHESSI satellite is sensitive to Gamma Ray Bursts
(GRBs) from about 40 keV up to 17 MeV, thus ideally complementing the Swift/BAT
instrument whose sensitivity decreases above 150 keV. We present preliminary
results of spectral fits of RHESSI GRB data. After describing our method, the
RHESSI results are discussed and compared with Swift and Konus.Comment: 4 pages, 4 figures, conference proceedings, 'Swift and GRBs:
Unveiling the Relativistic Universe', San Servolo, Venice, 5-9 June 2006, to
appear in Il Nouvo Ciment
Radiation Damage and Activation from Proton Irradiation of Advanced Scintillators
We present results from a proton accelerator beam test to measure radiation damage and activation in advanced scintillator materials. Samples of LaBr3:Ce and LaCl3:Ce were exposed to protons from 40-250 MeV at the Proton Irradiation Facility of the Paul Scherrer Institute in Switzerland. Twelve energy bands were used to simulate the spectrum of the South Atlantic Anomaly (SAA), with different samples exposed to the equivalent of 4 months, 1 year, and 5 years of SAA passage. No significant decrease in light output was found due to radiation damage, indicating that these new scintillator materials are radiation tolerant. High-resolution spectra of the samples were obtained before and after irradiation with a Germanium spectrometer to study activation. We present a detailed analysis of these spectra and a discussion of the suitability of these scintillator materials for detectors in future space missions
The Giant Flare of December 27, 2004 from SGR 1806-20
The giant flare of December 27, 2004 from SGR 1806-20 represents one of the
most extraordinary events captured in over three decades of monitoring the
gamma-ray sky. One measure of the intensity of the main peak is its effect on
X- and gamma-ray instruments. RHESSI, an instrument designed to study the
brightest solar flares, was completely saturated for ~0.5 s following the start
of the main peak. A fortuitous alignment of SGR 1806-20 near the Sun at the
time of the giant flare, however, allowed RHESSI a unique view of the giant
flare event, including the precursor, the main peak decay, and the pulsed tail.
Since RHESSI was saturated during the main peak, we augment these observations
with Wind and RHESSI particle detector data in order to reconstruct the main
peak as well. Here we present detailed spectral analysis and evolution of the
giant flare. We report the novel detection of a relatively soft fast peak just
milliseconds before the main peak, whose timescale and sizescale indicate a
magnetospheric origin. We present the novel detection of emission extending up
to 17 MeV immediately following the main peak, perhaps revealing a
highly-extended corona driven by the hyper-Eddington luminosities. The spectral
evolution and pulse evolution during the tail are presented, demonstrating
significant magnetospheric twist and evolution during this phase. Blackbody
radii are derived for every stage of the flare, which show remarkable agreement
despite the range of luminosities and temperatures covered. Finally, we place
significant upper limits on afterglow emission in the hundreds of seconds
following the giant flare.Comment: 32 pages, 14 figures, submitted to Ap
Nonsolar astronomy with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI)
The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is a NASA Small Explorer satellite designed to study hard x-ray and gamma-ray emission from solar flares. In addition, its high-resolution array of germanium detectors can see photons from high-energy sources throughout the Universe. Here we discuss the various algorithms necessary to extract spectra, lightcurves, and other information about cosmic gamma-ray bursts, pulsars, and other astrophysical phenomena using an unpointed, spinning array of detectors. We show some preliminary results and discuss our plans for future analyses. All RHESSI data are public, and scientists interested in participating should contact the principal author
An Impacting Descent Probe for Europa and the other Galilean Moons of Jupiter
We present a study of an impacting descent probe that increases the science
return of spacecraft orbiting or passing an atmosphere-less planetary body of
the solar system, such as the Galilean moons of Jupiter. The descent probe is a
carry-on small spacecraft (< 100 kg), to be deployed by the mother spacecraft,
that brings itself onto a collisional trajectory with the targeted planetary
body in a simple manner. A possible science payload includes instruments for
surface imaging, characterisation of the neutral exosphere, and magnetic field
and plasma measurement near the target body down to very low-altitudes (~1 km),
during the probe's fast (~km/s) descent to the surface until impact. The
science goals and the concept of operation are discussed with particular
reference to Europa, including options for flying through water plumes and
after-impact retrieval of very-low altitude science data. All in all, it is
demonstrated how the descent probe has the potential to provide a high science
return to a mission at a low extra level of complexity, engineering effort, and
risk. This study builds upon earlier studies for a Callisto Descent Probe (CDP)
for the former Europa-Jupiter System Mission (EJSM) of ESA and NASA, and
extends them with a detailed assessment of a descent probe designed to be an
additional science payload for the NASA Europa Mission.Comment: 34 pages, 11 figure
X-Ray Polarization of Solar Flares Measured with Rhessi
The degree of linear polarization in solar flares has not yet been precisely determined despite multiple attempts to measure it with different missions. The high energy range, in particular, has very rarely been explored, due to its greater instrumental difficulties. We approached the subject using the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) satellite to study six X-class and 1 M-class flares in the energy range between 100 and 350 keV. Using RHESSI as a polarimeter requires the application of strict cuts to the event list in order to extract those photons that are Compton scattered between two detectors. Our measurements show polarization values between 2 and 54%, with errors ranging from 10 to 26% in 1σ level. In view of the large uncertainties in both the magnitude and direction of the polarization vector, the results can only reject source models with extreme propertie
A method to localize gamma-ray bursts using POLAR
The hard X-ray polarimeter POLAR aims to measure the linear polarization of
the 50-500 keV photons arriving from the prompt emission of gamma-ray bursts
(GRBs). The position in the sky of the detected GRBs is needed to determine
their level of polarization. We present here a method by which, despite of the
polarimeter incapability of taking images, GRBs can be roughly localized using
POLAR alone. For this purpose scalers are attached to the output of the 25
multi-anode photomultipliers (MAPMs) that collect the light from the POLAR
scintillator target. Each scaler measures how many GRB photons produce at least
one energy deposition above 50 keV in the corresponding MAPM. Simulations show
that the relative outputs of the 25 scalers depend on the GRB position. A
database of very strong GRBs simulated at 10201 positions has been produced.
When a GRB is detected, its location is calculated searching the minimum of the
chi2 obtained in the comparison between the measured scaler pattern and the
database. This GRB localization technique brings enough accuracy so that the
error transmitted to the 100% modulation factor is kept below 10% for GRBs with
fluence Ftot \geq 10^(-5) erg cm^(-2) . The POLAR localization capability will
be useful for those cases where no other instruments are simultaneously
observing the same field of view.Comment: 13 pages, 10 figure
- …
