9 research outputs found

    The PlcR Virulence Regulon of Bacillus cereus

    Get PDF
    PlcR is a Bacillus cereus transcriptional regulator, which activates gene expression by binding to a nucleotidic sequence called the ‘PlcR box’. To build a list of all genes included in the PlcR regulon, a consensus sequence was identified by directed mutagenesis. The reference strain ATCC14579 sequenced genome was searched for occurrences of this consensus sequence to produce a virtual regulon. PlcR control of these genes was confirmed by comparing gene expression in the reference strain and its isogenic Δ-plcR strain using DNA microarrays, lacZ fusions and proteomics methods. The resulting list included 45 genes controlled by 28 PlcR boxes. Forty of the PlcR controlled proteins were exported, of which 22 were secreted in the extracellular medium and 18 were bound or attached to cell wall structures (membrane or peptidoglycan layer). The functions of these proteins were related to food supply (phospholipases, proteases, toxins), cell protection (bacteriocins, toxins, transporters, cell wall biogenesis) and environment-sensing (two-component sensors, chemotaxis proteins, GGDEF family regulators). Four genes coded for cytoplasmic regulators. The PlcR regulon appears to integrate a large range of environmental signals, including food deprivation and self cell-density, and regulate the transcription of genes designed to overcome obstacles that hinder B. cereus growth within the host: food supply, host barriers, host immune defenses, and competition with other bacterial species. PlcR appears to be a key component in the efficient adaptation of B. cereus to its host environment

    Necrotrophism Is a Quorum-Sensing-Regulated Lifestyle in Bacillus thuringiensis

    Get PDF
    How pathogenic bacteria infect and kill their host is currently widely investigated. In comparison, the fate of pathogens after the death of their host receives less attention. We studied Bacillus thuringiensis (Bt) infection of an insect host, and show that NprR, a quorum sensor, is active after death of the insect and allows Bt to survive in the cadavers as vegetative cells. Transcriptomic analysis revealed that NprR regulates at least 41 genes, including many encoding degradative enzymes or proteins involved in the synthesis of a nonribosomal peptide named kurstakin. These degradative enzymes are essential in vitro to degrade several substrates and are specifically expressed after host death suggesting that Bt has an active necrotrophic lifestyle in the cadaver. We show that kurstakin is essential for Bt survival during necrotrophic development. It is required for swarming mobility and biofilm formation, presumably through a pore forming activity. A nprR deficient mutant does not develop necrotrophically and does not sporulate efficiently in the cadaver. We report that necrotrophism is a highly regulated mechanism essential for the Bt infectious cycle, contributing to spore spreading

    The Secret Life of the Anthrax Agent Bacillus anthracis: Bacteriophage-Mediated Ecological Adaptations

    Get PDF
    Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities

    Oxidative evolution of virgin and flavored olive oils under thermo-oxidation processes

    No full text
    Changes in the oxidative status of Chetoui olive oil were monitored to attest the efficiency of some bioactive compounds from aromatic plants to improve the stability of olive oils after a maceration process at different concentrations. Aromatized olive oils were prepared by addition of lemon and thyme extracts at four different concentrations (20–80 g kg-1 of oils) to virgin olive oils. The following parameters were monitored: free fatty acids, peroxide value, ultra violet absorption characteristics at 232 and 270 nm, fatty acid composition and aromatic profiles. After thermo-oxidation processes, the oleic/linoleic acid ratio remained stable (4.5). Oxidative stability slightly decreased during thermo-oxidation processes. The heating of the oils changed their volatile profile and led to the formation of new volatile compounds, such as the two isomers of 2,4-heptadienal after heating at 100°C or (E,Z)-2,4-decadienal and (E,E)-2,4-decadienal after thermo-oxidation at 200°C. The use of lemon and thyme extracts modified the aromatic and the nutritional value of the olive oil by the transfer of some bioactive compounds, such as limonene and carvacrol. In contrast, the oxidative stability of the product did not change. Furthermore, the aromatized oils may be employed in seasoning and cooking of some food

    Distribution of Bacillus thuringiensis subsp. israelensis in Soil of a Swiss Wetland Reserve after 22 Years of Mosquito Control▿†

    No full text
    Recurrent treatments with Bacillus thuringiensis subsp. israelensis are required to control the floodwater mosquito Aedes vexans that breeds in large numbers in the wetlands of the Bolle di Magadino Reserve in Canton Ticino, Switzerland. Interventions have been carried out since 1988. In the present study, the spatial distribution of resting B. thuringiensis subsp. israelensis spores in the soil was measured. The B. thuringiensis subsp. israelensis concentration was determined in soil samples collected along six transects covering different elevations within the periodically flooded zones. A total of 258 samples were processed and analyzed by quantitative PCR that targeted an identical fragment of 159 bp for the B. thuringiensis subsp. israelensis cry4Aa and cry4Ba genes. B. thuringiensis subsp. israelensis spores were found to persist in soils of the wetland reserve at concentrations of up to 6.8 log per gram of soil. Continuous accumulation due to regular treatments could be excluded, as the decrease in spores amounted to 95.8% (95% confidence interval, 93.9 to 97.7%). The distribution of spores was correlated to the number of B. thuringiensis subsp. israelensis treatments, the elevation of the sampling point, and the duration of the flooding periods. The number of B. thuringiensis subsp. israelensis treatments was the major factor influencing the distribution of spores in the different topographic zones (P < 0.0001). These findings indicated that B. thuringiensis subsp. israelensis spores are rather immobile after their introduction into the environment

    Bacillus thuringiensis isolates entomopathogenic for Culex quinquefasciatus (Diptera: Culicidae) and Anticarsia gemmatalis (Lepidoptera: Noctuidae)

    No full text
    Samples of the Bacillus thuringiensis (Bt) were collected from soil and insects. Eight isolates were selected from rural soil, 15 from urban soil and 11 from insects. These were evaluated for entomopathogenicity against larvae of Anticarsia gemmatalis and Culex quinquefasciatus. The pathogenicity tests showed that a higher percentage of isolates were active against A. gemmatalis (60%) compared to C. quinquefasciatus (31%). Probit analysis (LC50) indicated that against A. gemmatalis four of the isolates presented values similar to the reference strain against A. gemmatalis, while against C. quinquefasciatus one isolate showed an LC50 similar to the reference strain (IPS-82). SDS-PAGE characterisation of two isolates showed a 27 kDa protein fraction related to the Bt subspecies israelensis cytolytic toxin (cyt) gene. One 130 kDa protein, possibly related to the Bt crystal inclusions (cry1) gene, was identified in the other two isolates, which were more toxic for lepidoptera; another isolate presented a protein of 100 kDa. Some new local Bt isolates had similar LC50 probit values to the reference strains
    corecore