309 research outputs found

    An empirical limit on the kilonova rate from the DLT40 one day cadence Supernova Survey

    Get PDF
    Binary neutron star mergers are important to understand stellar evolution, the chemical enrichment of the universe via the r-process, the physics of short gamma-ray bursts, gravitational waves and pulsars. The rates at which these coalescences happen is uncertain, but it can be constrained in different ways. One of those is to search for the optical transients produced at the moment of the merging, called a kilonova, in ongoing SN searches. However, until now, only theoretical models for kilonovae light curve were available to estimate their rates. The recent kilonova discovery AT~2017gfo/DLT17ck gives us the opportunity to constrain the rate of kilonovae using the light curve of a real event. We constrain the rate of binary neutron star mergers using the DLT40 Supernova search, and the native AT~2017gfo/DLT17ck light curve obtained with the same telescope and software system. Excluding AT~2017gfo/DLT17ck due to visibility issues, which was only discovered thanks to the aLIGO/aVirgo trigger, no other similar transients detected during 13 months of daily cadence observations of ∼\sim 2200 nearby (<<40 Mpc) galaxies. We find that the rate of BNS mergers is lower than 0.47 - 0.55 kilonovae per 100 years per 101010^{10} LB⊙L_{B_{\odot}} (depending on the adopted extinction distribution). In volume, this translates to <0.99\times 10^{-4}\,_{-0.15}^{+0.19},\rm{Mpc^{-3}}\,\rm{yr^{-1}}(SNe Ia-like extinction distribution), consistent with previous BNS coalescence rates. Based on our rate limit, and the sensitivity of aLIGO/aVirgo during O2, it is very unlikely that kilonova events are lurking in old pointed galaxy SN search datasets.Comment: 3 figures, 2 table

    The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck

    Get PDF
    During the second observing run of the Laser Interferometer gravitational- wave Observatory (LIGO) and Virgo Interferometer, a gravitational-wave signal consistent with a binary neutron star coalescence was detected on 2017 August 17th (GW170817), quickly followed by a coincident short gamma-ray burst trigger by the Fermi satellite. The Distance Less Than 40 (DLT40) Mpc supernova search performed pointed follow-up observations of a sample of galaxies regularly monitored by the survey which fell within the combined LIGO+Virgo localization region, and the larger Fermi gamma ray burst error box. Here we report the discovery of a new optical transient (DLT17ck, also known as SSS17a; it has also been registered as AT 2017gfo) spatially and temporally coincident with GW170817. The photometric and spectroscopic evolution of DLT17ck are unique, with an absolute peak magnitude of Mr = -15.8 \pm 0.1 and an r-band decline rate of 1.1mag/d. This fast evolution is generically consistent with kilonova models, which have been predicted as the optical counterpart to binary neutron star coalescences. Analysis of archival DLT40 data do not show any sign of transient activity at the location of DLT17ck down to r~19 mag in the time period between 8 months and 21 days prior to GW170817. This discovery represents the beginning of a new era for multi-messenger astronomy opening a new path to study and understand binary neutron star coalescences, short gamma-ray bursts and their optical counterparts.Comment: ApJL in press, 4 figure

    Optical photometry and spectroscopy of the 1987A-like supernova 2009mw

    Get PDF
    We present optical photometric and spectroscopic observations of the 1987A-like supernova (SN) 2009mw. Our BVRIBVRI and g′r′i′z′g'r'i'z' photometry covers 167 days of evolution, including the rise to the light curve maximum, and ends just after the beginning of the linear tail phase. We compare the observational properties of SN 2009mw with those of other SNe belonging to the same subgroup, and find that it shows similarities to several objects. The physical parameters of the progenitor and the SN are estimated via hydrodynamical modelling, yielding an explosion energy of 11 foe, a pre-SN mass of 19 M⊙19\,{\rm M_{\odot}}, a progenitor radius as 30 R⊙30\,{\rm R_{\odot}} and a 56^{56}Ni mass as 0.062 M⊙0.062\,{\rm M_{\odot}}. These values indicate that the progenitor of SN 2009mw was a blue supergiant star, similar to the progenitor of SN 1987A. We examine the host environment of SN 2009mw and find that it emerged from a population with slightly sub-solar metallicty.Comment: 11 pages, 12 figures, accepted for publication in MNRA

    Orbital and physical parameters of eclipsing binaries from the ASAS catalogue -- III. Two new low-mass systems with rapidly evolving spots

    Full text link
    We present the results of our spectroscopic and photometric analysis of two newly discovered low-mass detached eclipsing binaries found in the All-Sky Automated Survey (ASAS) catalogue: ASAS J093814-0104.4 and ASAS J212954-5620.1. Using the GIRAFFE instrument on the 1.9-m Radcliffe telescope at SAAO and the UCLES spectrograph on the 3.9-m Anglo-Australian Telescope, we obtained high-resolution spectra of both objects and derived their radial velocities (RVs) at various orbital phases. The RVs of both objects were measured with the TODCOR technique using synthetic template spectra as references. We also obtained V and I band photometry using the 1.0-m Elizabeth telescope at SAAO and the 0.4-m PROMPT instruments located at the CTIO. The orbital and physical parameters of the systems were derived with PHOEBE and JKTEBOP codes. We compared our results with several sets of widely-used isochrones. Our multi-epoch photometric observations demonstrate that both objects show significant out-of-eclipse modulations, which vary in time. We believe that this effect is caused by stellar spots, which evolve on time scales of tens of days. For this reason, we constructed our models on the basis of photometric observations spanning short time scales (less than a month). Our modeling indicates that (1) ASAS-09 is a main sequence active system with nearly-twin components with masses of M1 = 0.771(33) Msun, M2 = 0.768(21) Msun and radii of R1 = 0.772(12) Rsun and R2 = 0.769(13) Rsun. (2) ASAS-21 is a main sequence active binary with component masses of M1 = 0.833(17) Msun, M2 = 0.703(13) Msun and radii of R1 = 0.845(12) Rsun and R2 = 0.718(17) Rsun. Both systems confirm the characteristic of active low-mass stars, for which the observed radii are larger and the temperatures lower than predicted by evolutionary models. Other parameters agree within errors with the models of main sequence stars.Comment: 15 pages, 7 figures, 7 tables, to appear in A&

    2FGL J0846.0+2820: A new neutron star binary with a giant secondary and variable γ\gamma-ray emission

    Get PDF
    We present optical photometric and spectroscopic observations of the likely stellar counterpart to the unassociated \emph{Fermi}-Large Area Telescope (LAT) γ\gamma-ray source 2FGL J0846.0+2820, selected for study based on positional coincidences of optical variables with unassociated LAT sources. Using optical spectroscopy from the SOAR telescope, we have identified a late-G giant in an eccentric (ee = 0.06) 8.133 day orbit with an invisible primary. Modeling the spectroscopy and photometry together lead us to infer a heavy neutron star primary of ∼2M⊙\sim 2 M_{\odot} and a partially stripped giant secondary of ∼0.8M⊙\sim 0.8 M_{\odot}. Hα\alpha emission is observed in some of the spectra, perhaps consistent with the presence of a faint accretion disk. We find the γ\gamma-ray flux of 2FGL J0846.0+2820 dropped substantially in mid-2009, accompanied by an increased variation in the optical brightness, and since then it has not been detected by \emph{Fermi}. The long period and giant secondary are reminiscent of the γ\gamma-ray bright binary 1FGL J1417.7--4407, which hosts a millisecond pulsar apparently in the final stages of the pulsar recycling process. The discovery of 2FGL J0846.0+2820 suggests the identification of a new subclass of millisecond pulsar binaries that are the likely progenitors of typical field millisecond pulsars.Comment: 12 pages, 8 figures, 3 tables. Accepted for publication in Ap

    Down-regulation of cell surface CXCR4 by HIV-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CXC chemokine receptor 4 (CXCR4), a member of the G-protein-coupled chemokine receptor family, can serve as a co-receptor along with CD4 for entry into the cell of T-cell tropic X4 human immunodeficiency virus type 1 (HIV-1) strains. Productive infection of T-lymphoblastoid cells by X4 HIV-1 markedly reduces cell-surface expression of CD4, but whether or not the co-receptor CXCR4 is down-regulated has not been conclusively determined.</p> <p>Results</p> <p>Infection of human T-lymphoblastoid cell line RH9 with HIV-1 resulted in down-regulation of cell surface CXCR4 expression. Down-regulation of surface CXCR4 correlated temporally with the increase in HIV-1 protein expression. CXCR4 was concentrated in intracellular compartments in H9 cells after HIV-1 infection. Immunofluorescence microscopy studies showed that CXCR4 and HIV-1 glycoproteins were co-localized in HIV infected cells. Inducible expression of HIV-1 envelope glycoproteins also resulted in down-regulation of CXCR4 from the cell surface.</p> <p>Conclusion</p> <p>These results indicated that cell surface CXCR4 was reduced in HIV-1 infected cells, whereas expression of another membrane antigen, CD3, was unaffected. CXCR4 down-regulation may be due to intracellular sequestering of HIV glycoprotein/CXCR4 complexes.</p

    1FGL J1417.7-4407: A likely gamma-ray bright binary with a massive neutron star and a giant secondary

    Get PDF
    We present multiwavelength observations of the persistent Fermi-LAT unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 M_sun) and a ~ 0.35 M_sun giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H-alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk--magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma-ray to X-ray luminosity (~ 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a good candidate to monitor for a future transition between accretion-powered and rotational-powered states, but in the context of a giant secondary.Comment: ApJL in pres
    • …
    corecore