150 research outputs found

    Edge-FVV:Free Viewpoint Video Streaming by Learning at the Edge

    Get PDF
    Audiences cangain an immersive experience watching videos from multiple angles (a.k.a. viewpoints). Free Viewpoint Video (FVV) is developed to enable users to choose their preferred viewpoints during the play of a video. However, users may experience a delay if video frames of the chosen viewpoint cannot be timely loaded, or synthesized from multiple video streams of neighboring viewpoints. To address this problem, we present Edge-FVV, an edge-assisted FVV system that employs edge caches to reduce the delay in streaming the requested FVV from the server to client users. We first analyze the capacity and delay at edge caches when answering FVV requests. Next, we propose two types of machine learning algorithms that allocate the users' requests to appropriate edge caches. Our evaluation shows that two types of proposed algorithms outperform benchmarks by 4.2-7.4% and 4.6-6.8%, respectively, in reducing the delay for FVV requests.</p

    T-PickSeer: Visual Analysis of Taxi Pick-up Point Selection Behavior

    Full text link
    Taxi drivers often take much time to navigate the streets to look for passengers, which leads to high vacancy rates and wasted resources. Empty taxi cruising remains a big concern for taxi companies. Analyzing the pick-up point selection behavior can solve this problem effectively, providing suggestions for taxi management and dispatch. Many studies have been devoted to analyzing and recommending hot-spot regions of pick-up points, which can make it easier for drivers to pick up passengers. However, the selection of pick-up points is complex and affected by multiple factors, such as convenience and traffic management. Most existing approaches cannot produce satisfactory results in real-world applications because of the changing travel demands and the lack of interpretability. In this paper, we introduce a visual analytics system, T-PickSeer, for taxi company analysts to better explore and understand the pick-up point selection behavior of passengers. We explore massive taxi GPS data and employ an overview-to-detail approach to enable effective analysis of pick-up point selection. Our system provides coordinated views to compare different regularities and characteristics in different regions. Also, our system assists in identifying potential pick-up points and checking the performance of each pick-up point. Three case studies based on a real-world dataset and interviews with experts have demonstrated the effectiveness of our system.Comment: 10 pages, 10 figures; The 10th China Visualization and Visual Analytics Conferenc

    Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the avian infectious bronchitis virus

    Get PDF
    Avian infectious bronchitis virus (IBV) is one of the major viral respiratory diseases of chickens. Better understanding of the molecular mechanism of viral pathogenesis may contribute significantly to the development of prophylactic, therapeutic and diagnostic reagents as well as help in infection control. Avian IBV belongs to the Coronaviridaes and is similar to the other known coronaviruses. Previous studies have indicated that protein–protein interactions between nucleocapsid (N) and the membrane (M) proteins in coronavirus are related to coronavirus viral assembly. However, cases of IBV are seldom reported. In this study, yeast two-hybrid and  co-immunoprecipitation techniques were applied to investigate possible interactions between IBV N and M proteins. We found that interaction of the N and M proteins took place in vivo and the residues 168 – 225 of the M protein and the residues 150 - 210 of the N protein were determined to be involved in their interaction. These results may provide some useful information on the molecular mechanism of IBV’s N and M proteins, which will facilitate therapeutic strategies aiming at the disruption of the association between membrane and nucleocapsid proteins and indicate a new drug target for IBV.Key words: Co-immunoprecipitation, membrane protein, nucleocapsid protein, protein-protein interaction, yeast two-hybrid

    Facile Synthesis of ZnO Nanoparticles on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode Material for Lithium-Ion Batteries

    Get PDF
    ZnO/nitrogen-doped carbon nanotube (ZnO/NCNT) composite, prepared though a simple one-step sol-gel synthetic technique, has been explored for the first time as an anode material. The as-prepared ZnO/NCNT nanocomposite preserves a good dispersity and homogeneity of the ZnO nanoparticles (~6 nm) which deposited on the surface of NCNT. Transmission electron microscopy (TEM) reveals the formation of ZnO nanoparticles with an average size of 6 nm homogeneously deposited on the surface of NCNT. ZnO/NCNT composite, when evaluated as an anode for lithium-ion batteries (LIBs), exhibits remarkably enhanced cycling ability and rate capability compared with the ZnO/CNT counterpart. A relatively large reversible capacity of 1013 mAh_g-1 is manifested at the second cycle and a capacity of 664 mAh_g-1 is retained after 100 cycles. Furthermore, the ZnO/NCNT system displays a reversible capacity of 308 mAh_g-1 even at a high current density of 1600 mA_g-1. These electrochemical performance enhancements are ascribed to the reinforced accumulative effects of the well-dispersed ZnO nanoparticles and doping nitrogen atoms, which can not only suppress the volumetric expansion of ZnO nanoparticles during the cycling performance but also provide a highly conductive NCNT network for ZnO anode

    Expression profiling of human glial precursors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have generated gene expression databases for human glial precursors, neuronal precursors, astrocyte precursors and neural stem cells and focused on comparing the profile of glial precursors with that of other populations.</p> <p>Results</p> <p>A total of 14 samples were analyzed. Each population, previously distinguished from each other by immunocytochemical analysis of cell surface markers, expressed genes related to their key differentiation pathways. For the glial precursor cell population, we identified 458 genes that were uniquely expressed. Expression of a subset of these individual genes was validated by RT-PCR. We also report genes encoding cell surface markers that may be useful for identification and purification of human glial precursor populations.</p> <p>Conclusion</p> <p>We provide gene expression profile for human glial precursors. Our data suggest several signaling pathways that are important for proliferation and differentiation of human glial precursors. Such information may be utilized to further purify glial precursor populations, optimize media formulation, or study the effects of glial differentiation.</p
    corecore