

Citation for published version:
Zhang, H, Zhang, J, Feng, W, Bian, K & Tuo, H 2023, Edge-FVV: Free Viewpoint Video Streaming by Learning
at the Edge. in Proceedings - 2023 IEEE International Conference on Multimedia and Expo, ICME 2023.
Proceedings - IEEE International Conference on Multimedia and Expo, vol. 2023-July, IEEE, U. S. A., pp. 2009-
2014, 2023 IEEE International Conference on Multimedia and Expo, ICME 2023, Brisbane, Australia, 10/07/23.
https://doi.org/10.1109/ICME55011.2023.00344
DOI:
10.1109/ICME55011.2023.00344

Publication date:
2023

Document Version
Peer reviewed version

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Oct. 2023

https://doi.org/10.1109/ICME55011.2023.00344
https://doi.org/10.1109/ICME55011.2023.00344
https://researchportal.bath.ac.uk/en/publications/a79ad459-c4de-493e-ae07-0115ce37c232

Edge-FVV: Free Viewpoint Video Streaming by
Learning at the Edge

Haipeng Zhang1,2, Jie Zhang3, Weimiao Feng4, Kaigui Bian1,2, Hu Tuo5
1 National Key Laboratory for Multimedia Information Processing, China, 2 Peking University, China

3 University of Bath, UK
4 Institute of Information Engineering of CAS, China

5 IQIYI Science & Technology Co., Ltd., China
2201111598@pku.edu.cn, jz2558@bath.ac.uk, fengweimiao@iie.ac.cn, bkg@pku.edu.cn, tuohu@qiyi.com

Abstract—Audiences can gain an immersive experience watch-
ing videos from multiple angles (a.k.a. viewpoints). Free View-
point Video (FVV) is developed to enable users to choose their
preferred viewpoints during the play of a video. However, users
may experience a delay if video frames of the chosen viewpoint
cannot be timely loaded, or synthesized from multiple video
streams of neighboring viewpoints. To address this problem, we
present Edge-FVV, an edge-assisted FVV system that employs
edge caches to reduce the delay in streaming the requested
FVV from the server to client users. We first analyze the
capacity and delay at edge caches when answering FVV requests.
Next, we propose two types of machine learning algorithms
that allocate the users’ requests to appropriate edge caches.
Our evaluation shows that two types of proposed algorithms
outperform benchmarks by 4.2-7.4% and 4.6-6.8%, respectively,
in reducing the delay for FVV requests.

Index Terms—Free viewpoint video, resource allocation, virtual
view synthesis

I. INTRODUCTION

With increased bandwidth in communications networks,
people can easily access high-definition video for immersive
experiences, like Virtual Reality (VR) which creates a virtual
environment with scenes that appear to be real. Another typical
immersive video technology is Free Viewpoint Video (FVV),
which records video content (e.g., dance, shows, and sports)
through a set of cameras surrounding the scene. The users can
watch the video from any angle (a.k.a. viewpoint) in a regular
video player (e.g., web browser player), without any wearable
devices (e.g., headsets).

An FVV system prescribes two important protocols: acqui-
sition and virtual view synthesis. FVV acquisition is done by
deploying a number of cameras to capture the scene from
different viewpoints and then uploading captured videos to the
server via multiple video streams (each stream representing
the video from a viewpoint). If a user chooses to watch a
viewpoint that has never been recorded by any camera, the
system needs to perform a two-step virtual viewpoint synthesis
operation. First, the user’s device requests multiple video
streams, neighboring the chosen viewpoint of the user as the
reference viewpoints, from the server. Then, the user’s device
synthesizes the received video streams, produces a single video
stream at the chosen viewpoint, and delivers it to the video
player.

Fig. 1. An example of FVV viewed from four different viewpoints, where
the dance is at the center of the stage and a number of cameras are capturing
the videos of multiple viewpoints simultaneously.

While FVV acquisition can be completed offline, the virtual
view synthesis protocol may consume significant bandwidth
and computing resources. To alleviate these burdens, existing
research [1], [2] proposes adding extra edge caches (located
between the server and the users) to undertake the virtual
view synthesis task, given a requested viewpoint. The videos
of reference viewpoints can be stored in the edge caches
to accelerate the process for incoming requests to the given
viewpoint. However, a challenge arises regarding the optimal
number of caches. On one hand, more edge caches will
distribute users’ requests more evenly, leading to less delay for
virtual view synthesis to serve each user. On the other hand,
with more caches, each one is likely to have fewer reference
viewpoints stored, increasing the delay of downloading the
videos from the server if the requested reference viewpoint is
unavailable in the cache.

In this paper, we present Edge-FVV, an edge-assisted FVV
system that deploys a number of edge caches between the
server and users to reduce the total delay for the FVV requests.
First, we analyze the relationship between cache capacity
and delay, and strike a balance between the delay for virtual
view synthesis and that of downloading from the server, so
as to minimize the total processing time for FVV requests.
Next, based on different situations, we propose two types
of algorithms that allocate the users’ requests to appropriate

edge caches. We evaluate their performance in reducing the
total delay for FVV requests through extensive experiments.
Our experimental results are promising, indicating that the
proposed algorithm can effectively reduce the total delay of
all the users over benchmarks by 4.2-7.4% and 4.6-6.8%, by
choosing appropriate edge caches for the users.

II. RELATED WORK

There have been many works in the field of transmission,
content delivery, and other related areas for traditional and
360-degree videos [3]–[6]. However, the field of Free View-
point Video (FVV) remains largely unexplored. In this paper,
we discuss the construction and optimization of a FVV system.

Building a distributed FVV system. Most existing works
devote to improving virtual view synthesis methods and video
encoding, and only a few works focus on building a real-world
FVV system. A key problem in the designing of an FVV sys-
tem is how to choose the location to conduct the virtual view
synthesis. Most of the research assumes that the virtual view
synthesis can be finished by the server or on the users’ devices.
But in practice, as the number of users increases, the growing
number of virtual view synthesis tasks will place a huge burden
on the server or cost extra computational resources on the
users’ devices. Hence, a distributed system is needed where the
synthesis task is conducted at the network edge (e.g., proxy,
edge cache, edge server) [1], [2]. A distributed FVV system
can focus on improving the navigation quality for the client,
and on studying the reference view selection problem under
limited bandwidth [2]. The network architecture of an FVV
system can be abstracted as a k-ary tree with the main server at
the root and the users at the leaves, where the system calculates
the total bandwidth cost to optimize the selected location of
the edge servers [1]. In this work, we study the impact of the
number of edge caches on the delay for a user’s request, and
seek to optimize the delay by allocating users to caches.

Virtual view synthesis methods. A popular method in vir-
tual view synthesis is Depth Image Based Rendering (DIBR).
Using pictures shot from different viewpoints along with
corresponding depth images, DIBR methods can synthesize
the picture from a virtual viewpoint by 3D image warping
and inpainting [7]–[10]. Another popular method is to use
Neural Networks to synthesize virtual viewpoints from pure
images inputs [11]–[13] or reconstruct the 3D model of the
scene [14]–[17]. However, the aforementioned methods are
either time-consuming or limited in the form of input and
output, which are not suitable for large-scale FVV systems.
We turn our attention to Video Frame Interpolation (VFI)
methods [18]–[21]. By using VFI methods the edge caches
only need two adjacent reference viewpoints to synthesize a
virtual view in Edge-FVV. Also, it is easy to extend Edge-
FVV to support other synthesis methods that use more or less
reference video streams.

III. EDGE-FVV SYSTEM

Edge-FVV architecture. Edge-FVV adopts a three-tier
architecture that consists of the server, edge caches, and the

… …

Main Server UsersEdge Caches

Fig. 2. The architecture of the Edge-FVV system.

users. Fig. 2 shows the architecture, in which the acquisition,
and (virtual view) synthesis protocols are employed. Neither
the server nor the users’ devices are suitable for synthesis in
large-scale FVV systems, due to the high memory and compu-
tation requirements of existing virtual view synthesis methods.
Hence, Edge-FVV adds a tier of edge caches between the
server and users. In this way, we pull the server and users
from the synthesis tasks and save their costs.

VFI-based synthesis methods. In Edge-FVV, we choose a
Video Frame Interpolation (VFI) method [21], which is easy
to implement. Usually, VFI needs two consecutive frames
in time as an input, and synthesizes the frames between
them. However, in Edge-FVV, we consider the picture change
caused by the change of viewpoints as the motion in videos,
using VFI to supplement the missing viewpoints between two
original reference pictures. With VFI, Edge-FVV only needs
to transmit two reference video streams from the server to the
edge caches, to synthesize a virtual viewpoint.

When to request viewpoints. In Edge-FVV, when a user
chooses a specific viewpoint, it sends a request to a nearby
edge cache. If the video stream of the requested viewpoint
is already locally stored in the cache, then the stream is
transmitted to the user; otherwise, the cache will request the
user’s viewpoint from the server.

When to conduct synthesis. If the server has not acquired
the requested viewpoint, the edge cache finds two adjacent
reference viewpoints of the requested viewpoint and down-
loads the reference video streams from the server. After the
first pack of necessary frames is transmitted, the cache will
start the synthesis task by rendering the requested viewpoint
frames and then will transmit them to the user.

IV. METHODOLOGY

A. Relationship of Capacity and Delay

In Edge-FVV, the number of edge caches (denoted by Nc)
plays a dual role in the total delay of each user request. The
more caches deployed, the fewer users are served by each
cache, leading to less virtual view synthesis time for a cache
to serve the users. However, if a cache serves fewer users,
it is likely to have fewer number of reference viewpoints
in the cache, which in turn, will increase the likelihood of
downloading reference viewpoints from the server.

We denote by V the number of cameras in the acquisition
protocol. That is, there are at most V original video streams
generated by the cameras. For a specific virtual viewpoint, the
edge cache needs to receive its left and right neighboring refer-
ence viewpoints to perform the synthesis. When an edge cache
is synthesizing virtual views, according to users’ requests,
only part of those V original video streams are necessary as
reference videos. These videos will be transmitted from the
server to the edge cache. We denote the number of reference
videos stored at the ith edge cache as mi, and the expectation
of mi by M. To calculate the processing time, we denote the
total number of users by U , and the number of users served by
the ith edge cache by ui. Suppose, for an original reference
video stream, the edge cache needs to download a unit size of
the file to start the synthesis task; we denote by B the edge
cache’s bandwidth. In the synthesis process, suppose an edge
cache can concurrently perform G virtual view synthesis tasks,
and the time an edge cache needs to finish one synthesis task
is Tv .

The processing time T for a user’s request consists of two
parts: the download time and the synthesis time. We denote
them as T = td + ts, where td represents the download time
and ts represents the synthesis time. We present the following
propositions.

The capacity of the edge cache. First, we need to figure
out the capacity of the i-th cache, i.e., the number of reference
videos stored at that cache. There are V gaps between the
viewpoints of V original videos. For a single reference video
stream vk, it is used by a user if this user’s virtual viewpoint
falls into its left gap or right gap. Therefore the probability
that vk is used by a specific user is 2

V . In the i-th cache, for all
the ui users the cache is serving, the viewpoints they watch
are independent of each other. Therefore, the probability that
vk is not used by any user in the i-th cache is Pni = (1− 2

V)
ui

And the probability that vk is in the i-th cache is 1−Pni. We
can have the expectation of mi as

M = E
(V−1∑
k=0

vk

)
=

V−1∑
k=0

(
E(vk)

)
= V

(
1−

(
1− 2

V

)ui
)
(1)

The delay of video download and synthesis. Let tdi
denote the delay for video caching at the i-th edge cache In the
i-th cache, mi video streams are already in transmission. When
the cache wants to transmit ni new video streams according to
a new request, the new streams have to share the bandwidth
equally with the other mi video streams. We can have the
download time tdi =

mi+ni

B .
For one virtual viewpoint synthesis task, two reference

videos are needed. In the i-th cache, we denote the proba-
bility that one reference video is already cached and another
reference video stream needs to be downloaded as P1i, and
the probability that both the two reference video streams need
to be downloaded as P2i. We can calculate the expectation of
the downloading time as:

E(tdi) = P1i ·
mi + 1

B
+ P2i ·

mi + 2

B
(2)

For a new synthesis task, the probability that only one new
stream needs to be downloaded is P1 = 2(1 − Pni)Pni The
probability that two new streams need to be downloaded is
P2 = (Pni)

2

The expectation of the time needed to download new
reference videos is

E(tdi) = P1i ·
mi + 1

B
+ P2i ·

mi + 2

B

=
Pni(2(mi + 1)−miPni)

B

=
(V −mi)(mi

2 + 2V + Vmi)

BV2

(3)

When a new synthesis task comes to the i-th cache, we can
estimate the time this task needs to wait is ui

G · Tv , so we can
estimate the total synthesis time as

E(tsi) =
(ui

G
+ 1

)
· Tv (4)

The total delay at the edge cache. Therefore the expecta-
tion of the processing time is

E(Ti) = E(tdi) + E(tsi)

=
Pni(2(mi + 1)−miPni)

B
+

(ui

G
+ 1

)
· Tv

=
(V −mi)(mi

2 + 2V + Vmi)

BV2
+

(ui

G
+ 1

)
· Tv

(5)

On average, the number of users each server serves is E(ui) =
U
Nc

, and the expected number of mi can be represented as
M = V

(
1 − (1 − 2

V)
U
Nc

)
. We replace the ui and mi in (5)

with their expected numbers, and estimate the expectation of
the processing time of a cache as

E(T) =
(V −M)(M2 + 2V + VM)

BV2
+
(U
GNc

+1
)
·Tv (6)

where M = V(1− (1− 2
V)

U
Nc), and B, G, V , U , Tv depends

on the scene.
Number of edge caches to be deployed. Eqt. (6) enables

us to derive the expectation of the processing time for any
number of edge caches. We note that, however, it is infeasible
to derive a closed-form expression of the optimal number of
edge caches due to the function composition embedded in
the above equation. Nonetheless, the possible number of edge
caches is limited and not large, so we can enumerate them and
determine the number of edge caches to be deployed through
experiments. As the corresponding results in Section V show,
when the synthesis time Tv is small, the processing time will
have a local minimum at a small number of edge caches. It
is economical to deploy edge caches according to this local
minimum, as the increment of edge caches may be expensive
and entail longer delays in responding to users’ requests. We
present our discussion in Section V.

B. Machine Learning-based User Allocation

In Edge-FVV, the edge caches are located across different
regions. We denote the edge caches that the i-th user can
connect to as the agent set Ai of that user, and the size of

Ai is NA. There are two different ways of matching the i-
th user’s request with a nearby cache: (1) a distributed way
allowing each user to autonomously connect to an agent in
Ai; or (2) a centralized way assigning a user to an agent in
Ai by the server who has the global information.

A distributed approach: Multi-armed bandit based al-
location. Different edge caches incur different synthesis times
and transmission times. Also, the spatial distribution of the
users in physical regions leads to different loads on the edge
caches. Hence, each user can choose an agent based on
its location and the historic information of the agent. We
implement four multi-armed bandit algorithms, ϵ-greedy, ϵ-
decay, ϵ-first, and Upper Confidence Bound (UCB) [22], for
user-side allocation, and the experimental results are shown in
Section V.

A centralized approach: DQN-based allocation. When
the server has the states of all the edge caches, upon the arrival
of a new request at a given viewpoint, the server can either
choose the cache with the least number of users or choose
a cache that stores the demanded reference views. However,
neither approach can balance the weight of the synthesis time
and the download time. Moreover, the assignment may have
a long-term influence on all other users. If an agent has many
incoming users, the assignment of the current user to this
agent will increase the waiting time for all the other incoming
users and hence will have a greater delay for all the users
in total. To estimate the long-term reward of an assignment,
we calculate the Q values for each assignment using Deep Q-
Network (DQN). The number of serving users and the number
of reference videos cached in each cache are first fed into two
separate neural networks (namely, UserNet and the VideoNet)
to embed the user features and video features. The two features
are then concatenated and fed into the ValueNet to generate the
Q value for each cache. The Edge-FVV system is considered
as a reinforcement learning environment. Each time a user’s
request comes, the server chooses an agent for this user. The
server’s choice is considered as its action to interact with the
environment. The processing time of this request is considered
as the reward given by the environment. In DQN, the Q values
are updated as

Q(st, at) = rt + γQ′(st+1, argmaxQ(st+1, a)), (7)

where st is the state at time t, at is the action, and rt is the
reward. The second term in (7) calculates the value of the next
state. This way, DQN can estimate the long-term reward of an
action. In our implementation, the input state to the DQN is the
number of users and the number of reference videos in each
edge cache state. Different from (7), when a user’s request
arrives, the available agents are only a subset of all the actions.
The value of the next state of the edge cache cannot be simply
estimated as the Q value achieved by the best action, since the
best action cannot be chosen in most cases. To better describe
the value of the next state, we estimate the spatial distribution
of users along with the agent sets, and calculate the value of
the next state as the weighted sum of the maximum Q value

0 50 100 150 200 250
Number of Edge Caches

0

1

2

3

Pr
oc

es
si

ng
 T

im
e(

s) Caculated
Measured

(a)

0 50 100 150 200 250
Number of Edge Caches

0

1

2

3

Pr
oc

es
si

ng
 T

im
e(

s) Caculated
Measured

(b)

0 50 100 150 200 250
Number of Edge Caches

0

3

6

9

Pr
oc

es
si

ng
 T

im
e(

s) Caculated
Measured

(c)

0 50 100 150 200 250
Number of Edge Caches

0

3

6

9

Pr
oc

es
si

ng
 T

im
e(

s) Caculated
Measured

(d)

Fig. 3. Calculated and measured results of the average processing time using
different numbers of edge caches, where G = 10, B = 10, Tv = 0.1 and
U = 1024 for Fig. 3(a), Tv = 0.1 and U = 256 for Fig. 3(b), Tv = 1 and
U = 1024 for Fig. 3(c),Tv = 1 and U = 256 for Fig. 3(d).

of each agent set using the following equation:

Q(st, at) = rt + γ
∑
Ai

PAi
Q′(st+1, argmax

a∈Ai

(Q(st+1, a))).

V. EVALUATION

In this section, we evaluate Edge-FVV via simulations and
experiments over a commercial FVV platform.

A. Impact of Number of Edge Caches

In Fig. 3, We plotted the curves of the delay of the FVV
system with the change of the number of edge-caches under
different conditions of the total number of users, bandwidth,
GPU concurrency, and virtual viewpoint synthesis time based
on the calculation and simulation results. The green dashed
line and red solid line in the figure represent the calculation re-
sults and simulation results, respectively. In our simulation, we
let the users individually choose their agents and viewpoints
and then launch a new user request at a randomly chosen
viewpoint.

We observe that the measured simulation results are slightly
lower than the calculated processing time. This is because
when a user requests a viewpoint, its left-hand side viewpoint
and right-hand side viewpoint will be downloaded together
and cached. Hence, the cached reference videos are not
completely independent of each other. We also discover that
the probability that the edge cache needs to apply for new
viewpoint videos is slightly lower than we estimated under
the independent assumption. However, our calculated result
can effectively show the trend of the processing time change.
From the results, we can tell that when the synthesis time is
much smaller than the download time (e.g., as the results in
Figs. 3(a) and 3(b)), the processing time curve will have a
local minimum at an arbitrary number of edge caches. In such
a case, it is economical to employ edge caches according to

TABLE I
COMPARISON OF DIFFERENT MULTI-ARMED BANDIT ALGORITHMS UNDER

DIFFERENT SETTINGS. THE NUMBERS AFTER THE SLASH SHOWS THE
RESULT ON THE COMMERCIAL PLATFORM.

Algorithms Nc=64 Nc=16 10 ops 30 ops
NA=16 NA=4

ϵ-greedy 1.98 2.86/3.05 2.65/3.12 2.75/3.18
ϵ-first 1.91 2.79/2.98 2.56/3.04 2.70/3.08
ϵ-decay 1.94 2.80/2.98 2.58/3.07 2.72/3.07

UCB 2.08 2.90/3.17 2.66/3.22 2.81/3.29
random 2.11 2.97/3.22 2.67/3.26 2.89/3.38

fixed 2.11 2.97/3.17 2.66/3.23 2.83/3.29

the local minimum, and the increase in edge caches may lead
to a higher processing time. When the download time is much
smaller than the synthesis time (e.g., as shown in Figs. 3(c)
and 3(d)), the processing time approximates the inverse ratio
curve, and the effect of adding more edge caches diminishes
as the number of servers increases.

B. Comparison of Multi-armed Bandit Algorithms

In the experiment, we emulate 128 users in total. We
set B to 10, G to 10 and Tv to 1. In each time slot, we
randomly choose a user to start watching FVV or change
to a random viewpoint. The chosen user will select an edge
cache to connect with, according to the employed multi-armed
bandit algorithm. The connected edge cache will send back the
measured processing time. The commercial platform provides
us with the real distribution of users in different provinces in
China mainland. We choose 16 locations of edge caches that
are roughly evenly scattered in China, and select four agents
for each user from the edge cache according to the distance
of the users’ geographical location.

Table I shows the processing time when comparing different
multi-armed bandit algorithms on each user’s device. We
change the settings as shown in Table I, while in columns 1&2
we fix the average number of operations to 20 and in
columns 3&4 we fix Nc=16 and NA=4. Results show that all
of the multi-armed bandit algorithms are better than letting the
user randomly choose their agents or letting them connect to
a fixed edge cache. In addition, ϵ-first and ϵ-decay outperform
the others in the user allocation tasks. This implies that it is
important to let users settle down to a fixed viewpoint when
watching FVV, and the frequent change in users’ agents will
cause fluctuation in the processing time and confuse the multi-
armed bandit algorithms. Note that in our implementation,
ϵ-first only explores the agents in the first three operations,
which is less than half the number of all the agents, but it still
outperforms all the other algorithms. This shows that from the
perspective of the processing time of all the users, to avoid
fluctuation caused by exploration, the users do not have to
find their best agent.

We also show results using different ϵ in ϵ-first and ϵ-
greedy, and different rates of decay δ in ϵ-decay. In Table II,
we set Nc = 32 and NA = 8. The ϵ-greedy and ϵ-first are
employed with ϵ = 0.1, 0.2, 0.5, and ϵ-decay is employed with

TABLE II
COMPARISON OF USING DIFFERENT PARAMETERS IN MULTI-ARMED

BANDIT ALGORITHMS.

Algorithms Parameters Average Processing Time
ϵ-greedy ϵ=0.1, 0.2, 0.5 2.2170, 2.2137, 2.2246
ϵ-first ϵ=0.1, 0.2, 0.5 2.1755, 2.1664, 2.1790
ϵ-decay ϵ=1, 0.5, 0.2 2.2070, 2.2182, 2.2369

δ = 1, 0.5, 0.2. The results show that the parameters have less
effect on the average processing time of all the users, but the
most explorative versions of each algorithm are still worse
than the other ones. It is still harmful to let the users have
too much exploration. We achieve the best performance using
ϵ-first with ϵ = 0.2.

C. Evaluation of DQN

There are 16 edge caches in the system, and each user
has 4 agents selected from the edge caches. In this way,
we apply two sequential 16×16 fully connected layers with
ReLu as the activation layer both in the UserNet and the
VideoNet to separately output two 16×1 features for users
and cached videos in each edge cache. The output of UserNet
and VideoNet will be concatenated into a 16×2 feature and
input into QNet. We apply a 2×16 fully connected layer with
ReLU followed by a 16×1 fully connected layer in the QNet
to output Q values for each edge cache.

During the training process, we employ Double DQN,
where one network will be used to estimate the Q values of
the current state, and the algorithm will have another network
that has the same architecture but different parameters to
evaluate the Q values of the next state. The parameters of the
second network will be copied from the first network every
few iterations. In our implementation, we update the second
network’s parameters every 100 iterations. We set γ to 0.5 to
consider the long-term influence of the main server’s decisions.
We use adam optimizer with a learning rate of 0.001. We also
use epsilon-greedy with ϵ = 0.2 to help our model to obtain
experiences besides doing actions chosen by the model.

As shown in Fig. 4, we compare DQN to the algorithm
that assigns the user to the edge cache with the fewest users
(denoted as Greedy), the algorithm that randomly chooses
an edge cache with the required reference videos in cache
(denoted as Cache-R), and the algorithm that chooses the edge
cache with the fewest users among all the edge caches that
have the required videos in cache (denoted as Cache-G). The
result shows that all the other algorithms suffer from balancing
the weight of having the reference videos in the cache and the
weight of having fewer users, while DQN can jointly consider
the two factors as well as estimate the long-term reward of
the assignment. Compared with Cache-G (which has the best
performance among all the algorithms we compare with), the
DQN reduces the total processing time by 4.6–6.8%.

VI. CONCLUSION

This paper presents Edge-FVV, an edge-assisted FVV Sys-
tem, where extra edge caches are added between the main

0 1 2 3 4

Allocation Algorithms
1.5

2.0

2.5

3.0
Pr

oc
es

si
ng

 T
im

e(
s)

Experiments on Simulated Data

DQN
Cache-R
Cache-G
Greedy
Random

(a)

0 1 2 3 4

Allocation Algorithms
1.5

2.0

2.5

3.0

Pr
oc

es
si

ng
 T

im
e(

s)

Experiments on Commercial Data

DQN
Cache-R
Cache-G
Greedy
Random

(b)

Fig. 4. Comparison of server-side allocation algorithms.

server and users to undertake the virtual view synthesis tasks.
We first derive the mathematical relationship between the
number of edge caches and the delay for an edge cache to serve
a user’s new viewpoint request, and figure out the number of
edge caches to deploy that leads to a lower processing time.
We then explore the allocation of users to edge caches in Edge-
FVV by distributed and centralized algorithms. Experimental
results show that the multi-armed bandit (distributed) and
DQN-based (centralized) algorithms can effectively reduce the
total processing time of all the users over benchmarks by
4.2-7.4% and 4.6-6.8% respectively, by choosing appropriate
agents for the users.

ACKNOWLEDGEMENT

This project is partially sponsored by National Key Research
and Development Program of China No. 2020YFB2103801,
NSFC 62032003, and Beijing Academy of Artificial Intel-
ligence (BAAI). Jie Zhang was partially supported by a
Leverhulme Trust Research Project Grant (2021 – 2024) and
an EPSRC grant (EP/W014912/1).

REFERENCES

[1] Á. Huszák, “Advanced free viewpoint video streaming techniques,”
Multimedia Tools and Applications, vol. 76, no. 1, pp. 373–396, 2017.

[2] L. Toni, G. Cheung, and P. Frossard, “In-network view synthesis for
interactive multiview video systems,” IEEE Transactions on Multimedia,
vol. 18, no. 5, pp. 852–864, 2016.

[3] Y. Zhang, P. Zhao, K. Bian, Y. Liu, L. Song, and X. Li, “Drl360: 360-
degree video streaming with deep reinforcement learning,” in IEEE IN-
FOCOM 2019-IEEE Conference on Computer Communications. IEEE,
2019, pp. 1252–1260.

[4] Y. Zhang, K. Bian, H. Tuo, B. Cui, L. Song, and X. Li, “Geo-
edge: Geographical resource allocation on edge caches for video-on-
demand streaming,” in 2018 4th International Conference on Big Data
Computing and Communications (BIGCOM). IEEE, 2018, pp. 189–
194.

[5] Y. Zhang, Y. Zhang, Y. Wu, Y. Tao, K. Bian, P. Zhou, L. Song, and
H. Tuo, “Improving quality of experience by adaptive video streaming
with super-resolution,” in IEEE INFOCOM 2020-IEEE Conference on
Computer Communications. IEEE, 2020, pp. 1957–1966.

[6] Y. Guan, Y. Zhang, B. Wang, K. Bian, X. Xiong, and L. Song, “Perm:
Neural adaptive video streaming with multi-path transmission,” in
IEEE INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 2020, pp. 1103–1112.

[7] Z. Deng and M. Wang, “Reliability-based view synthesis for free
viewpoint video,” Applied Sciences, vol. 8, no. 5, p. 823, 2018.

[8] G. Luo and Y. Zhu, “Foreground removal approach for hole filling in 3d
video and fvv synthesis,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 27, no. 10, pp. 2118–2131, 2016.

[9] A. Oliveira, G. Fickel, M. Walter, and C. Jung, “Selective hole-filling for
depth-image based rendering,” in IEEE ICASSP, 2015, pp. 1186–1190.

[10] A. Q. de Oliveira, T. L. da Silveira, M. Walter, and C. R. Jung, “A
hierarchical superpixel-based approach for dibr view synthesis,” IEEE
Transactions on Image Processing, vol. 30, pp. 6408–6419, 2021.

[11] T. Habtegebrial, K. Varanasi, C. Bailer, and D. Stricker, “Fast view
synthesis with deep stereo vision,” arXiv preprint arXiv:1804.09690,
2018.

[12] J. Xie, R. Girshick, and A. Farhadi, “Deep3d: Fully automatic 2d-to-3d
video conversion with deep convolutional neural networks,” in ECCV.
Springer, 2016, pp. 842–857.

[13] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” in ECCV. Springer, 2020, pp. 405–421.

[14] J. Chen, R. Watanabe, K. Nonaka, T. Konno, H. Sankoh, and S. Naito,
“Fast free-viewpoint video synthesis algorithm for sports scenes,” in
IEEE/RSJ IROS. IEEE, 2019, pp. 3209–3215.

[15] J. Kilner, J. Starck, A. Hilton, and O. Grau, “Dual-mode deformable
models for free-viewpoint video of sports events,” in Sixth International
Conference on 3-D Digital Imaging and Modeling. IEEE, 2007, pp.
177–184.

[16] G. Riegler and V. Koltun, “Free view synthesis,” in ECCV. Springer,
2020, pp. 623–640.

[17] S. Rasmuson, E. Sintorn, and U. Assarsson, “A low-cost, practical
acquisition and rendering pipeline for real-time free-viewpoint video
communication,” The Visual Computer, vol. 37, no. 3, pp. 553–565,
2021.

[18] S. Niklaus and F. Liu, “Softmax splatting for video frame interpolation,”
in IEEE/CVF CVPR, 2020, pp. 5437–5446.

[19] W. Bao, W.-S. Lai, C. Ma, X. Zhang, Z. Gao, and M.-H. Yang, “Depth-
aware video frame interpolation,” in IEEE/CVF CVPR, 2019, pp. 3703–
3712.

[20] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and
J. Kautz, “Super slomo: High quality estimation of multiple intermediate
frames for video interpolation,” in IEEE/CVF CVPR, 2018, pp. 9000–
9008.

[21] Z. Huang, T. Zhang, W. Heng, B. Shi, and S. Zhou, “Rife: Real-
time intermediate flow estimation for video frame interpolation,” arXiv
preprint arXiv:2011.06294, 2020.

[22] R. Agrawal, “Sample mean based index policies by o(log n) regret for the
multi-armed bandit problem,” Advances in Applied Probability, vol. 27,
no. 4, p. 1054–1078, 1995.

