23 research outputs found

    Roadway System Assessment Using Bluetooth-Based Automatic Vehicle Identification Travel Time Data

    Get PDF
    This monograph is an exposition of several practice-ready methodologies for automatic vehicle identification (AVI) data collection systems. This includes considerations in the physical setup of the collection system as well as the interpretation of the data. An extended discussion is provided, with examples, demonstrating data techniques for converting the raw data into more concise metrics and views. Examples of statistical before-after tests are also provided. A series of case studies were presented that focus on various real-world applications, including the impact of winter weather on freeway operations, the economic benefit of traffic signal retiming, and the estimation of origin-destination matrices from travel time data. The technology used in this report is Bluetooth MAC address matching, but the concepts are extendible to other AVI data sources

    A hazard-based analysis of airport security transit times

    Get PDF
    AbstractAirport security screening, and the amount of time it costs travelers, has been a persistent concern to travelers, airport authorities, and airlines – particularly in recent years where changes in perceived threats have resulted in changes in security procedures that have caused great uncertainty relating to security transit times. To gain a better understanding of the factors influencing travelers' security transit times, determinants of security transit times are studied by using anonymous Bluetooth media access control address matching to determine the actual security travel times of individual passengers at the Cincinnati/Northern Kentucky International Airport. These transit-time data are then analyzed using a random-parameters hazard-based duration model to statistically explore the factors that affect airport security transit times. The estimation results reveal, as expected, that a wide variety of factors affect security transit times including the number of enplaning seats (reflecting flight schedules), weather conditions, day of week, as well as obvious variables such as traveler volume and the number of open security lanes. The detailed statistical findings show that current security procedures are reactive instead of proactive, and that substantial reductions in security transit times could be attained by optimizing security operations using a statistical model such as the one estimated in this paper

    Travel Time Observations Using Bluetooth MAC Address Matching: A Case Study on the Rajiv Gandhi Roadway: Chennai, India

    Get PDF
    Bluetooth MAC Address matching has become a useful approach for determining travel times on corridors in the United States. In September 2013, an international collaborative study was performed using this technology along a busy urban corridor in Chennai, India. Two Purdue University graduate students traveled to Chennai, India to interact and understand the dynamics of exchanging knowledge and implementing technologies in different environments. The students worked with students from IIT Madras to determine the feasibility of Bluetooth probe vehicle technology along a typical Indian corridor. The study determined that it is feasible to expand Bluetooth use in India. Using the technology, the impact of weather, holiday and peak hour related traffic events were determined and evaluated. Of particular note were the relative high penetration of Bluetooth devices, and the exceptionally strong impact of precipitation on the heterogeneous traffic stream in Chennai, India

    Leveraging High Resolution Signalized Intersection Data to Characterize Discharge Headway Distributions and Saturation Flow Rate Reliability

    Get PDF
    As highway systems become more congested, it becomes increasingly important to understand the reliability with which we can estimate important performance measures such as volume to capacity ratios, particularly as we move toward leveraging field infrastructure to obtain real-time performance measures. In 1947, Greenshields wrote a paper that characterized “green time consumed” by “car-in-line-number” that ultimately was called headway. Average headway is one of principles used by the highway capacity manual to estimate saturation flow rate at signalized intersections. However, the current analytical techniques calculate a deterministic value for saturation flow rate that does not consider the stochastic variation of saturation flow rate. This paper reviews techniques used to estimate saturation flow rate, and proposes enhanced calculation methods to group saturation flow rate estimates by queue length. Grouping saturation flow rate estimates by queue length provides a convenient framework to evaluate saturation flow rate reliability. The inter-quartile range (25% - 75%) of saturation flow rates was calculated to be 1000vph based on Greenshields’ calculation techniques. Using the proposed enhanced calculation characterizing saturation flow rate, the inter-quartile range of saturation flow rate was shown to decrease from approximately 400 vph with 5 cars in a queue to 300 vph with 10 cars in queue. Because saturation flow rate is a fundamental input to volume-to-capacity performance measures, characterizing the stochastic variation of saturation flow rates provides a basic input for assessing how reliably one can estimate important performance measures such as volume-to-capacity ratios, as well as other performance measures that build upon volume-to-capacity ratios

    Graphical Performance Measures for Practitioners to Triage Split Failure Trouble Calls

    Get PDF
    Detector occupancy is commonly used to measure traffic signal performance. Despite improvements in controller computational power, there have been relatively few innovations in occupancy-based performance measures or integration with other data. This paper introduces and demonstrates the use of graphical performance measures based on detector occupancy ratios to verify potential split failures and other signal timing shortcomings reported to practitioners by the public. The proposed performance measures combine detector occupancy during the green phase, detector occupancy during the first five seconds of the red phase, and phase termination cause (gap out or force off). These are summarized by time of day to indicate whether the phase is undersaturated, nearly saturated, or oversaturated. These graphical performance measures and related quantitative summaries provide a first-level screening and triaging tool for practitioners to assess user concerns regarding whether sufficient green times are being provided to avoid split failures. They can also provide outcome-based feedback to staff after making split adjustments to determine whether operation improved or worsened. The paper concludes by demonstrating how the information was used to make an operational decision to re-allocate green time that reduced the number of oversaturated cycles on minor movements from 304 to 222 during a Thursday 0900-1500 timing plan and from 240 to 180 during a Friday 0900-1500 timing plan

    Improving Intersection Behavior through Delay-Based Left Turn Phase Initiation

    Get PDF
    Serving protected left-turn phases for one or two vehicles can often be an inefficient use of cycle green time when the opposing through movements are over capacity. This paper assesses the performance of an intersection at which controller logic is applied to delay the call for a protected left-turn phase on the basis of vehicle wait times. During four weeks of evaluation, the delay on left-turn phase calls was varied in 25-s increments from 0 to 75 s. The results indicate that delaying left-turn phase initiation substantially increases the amount of green time for saturated through movements while minimally increasing the travel delay for left-turning drivers. The recommendation is made for agencies to consider using a delay in the range of 25 to 50 s for calling protected phases at intersections at which the opposing through movement is oversaturated and could benefit from additional green time. This paper presents one of the first quantitative studies evaluating potential intersection capacity and performance improvements with respect to left-turn detector delay. </jats:p
    corecore