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ABSTRACT

K?ywords: ' Airport security screening, and the amount of time it costs travelers, has been a persistent concern to
_?“PO,‘::,EC”“W travelers, airport authorities, and airlines — particularly in recent years where changes in perceived
ransit time

threats have resulted in changes in security procedures that have caused great uncertainty relating to
security transit times. To gain a better understanding of the factors influencing travelers’ security transit
times, determinants of security transit times are studied by using anonymous Bluetooth media access
control address matching to determine the actual security travel times of individual passengers at the
Cincinnati/Northern Kentucky International Airport. These transit-time data are then analyzed using a
random-parameters hazard-based duration model to statistically explore the factors that affect airport
security transit times. The estimation results reveal, as expected, that a wide variety of factors affect
security transit times including the number of enplaning seats (reflecting flight schedules), weather
conditions, day of week, as well as obvious variables such as traveler volume and the number of open
security lanes. The detailed statistical findings show that current security procedures are reactive instead
of proactive, and that substantial reductions in security transit times could be attained by optimizing
security operations using a statistical model such as the one estimated in this paper.

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license,

Duration model

1. Introduction Airport security transit times have historically been analyzed

with traditional queuing theory approaches, using various as-

To improve traveler security and deal with new perceived
threats, there have been many changes in airport screening prac-
tices and technology in recent years (Leone and Liu, 2011). How-
ever, as these practices and technologies have evolved over time,
there is the continual need to strike a balance between the level of
safety provided to travelers and the inconvenience being caused by
airport screening practices, which can be measured in terms of
factors such as lost time and intrusions on traveler privacy. While
traveler perceptions and satisfaction with airport screening pro-
cedures can be difficult to measure and may change over time
(Gkritza et al., 2006), the factors that affect travelers’ transit times
through airport security screening can be readily assessed and such
an assessment can serve as a basis for new policies and procedures
that seek to reduce security transit times.

* Corresponding author. Tel.: +1 2318832669.
E-mail addresses: ahainen@purdue.edu (A.M. Hainen), sremias@purdue.edu
(S.M. Remias), darcy@purdue.edu (D.M. Bullock), flm@purdue.edu (F.L. Mannering).

sumptions with regard to traveler arrival and processing rates, or by
applying statistical analyses of observed transit times (Gilliam,
1979; Zografos and Madas, 2006; Castaneda et al., 2007; Marin
et al, 2007; Manataki and Zografos, 2009; Lee and Jacobson,
2011; Seo et al., 2012). These approaches (and really all ap-
proaches that assess security travel times) require a sizeable
amount of data collection. Queue length, the length of time it takes
to transit through the queue, and processing time are all potentially
important considerations (Goswami et al., 2007; Correia et al,,
2008).

Over the years, different methods have been used to collect this
airport security data, including manually handing out time-
stamped cards at the entrance of security and time-stamping
them at the end of security, and using videos to observe queue
length, travelers transit times through the queue, and security
processing times. More recently, technology such as anonymous
Bluetooth media access control (MAC) address matching (Bullock
et al,, 2010; Remias et al., 2013), radio-frequency identification
(RFID) (McCoy et al., 2005), iris or facial recognition (Elgendi, 2005),
and WiFi tracking have been used to collect security transit-time
data. In addition to providing data for in-depth statistical anal-
ysis, these real-time data-collection approaches can potentially
allow security operators to make immediate changes to security

0969-6997 © 2013 The Authors. Published by Elsevier Ltd. Open access under CCRY-NC-ND license.
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operations in high-demand time periods by opening more security-
processing lanes or by adding more personnel to decrease pro-
cessing times in open lanes.

Unfortunately, security operators are often restricted by
staffinglevels and other constraints that can make real-time ad-
justments in response to such data difficult. However, statistically
analyzing technologically-enabled security transit-time data could
help security operators to better understand the important vari-
ables that affect these transit times and make more informed long-
term staffing and operation decisions. The analysis of such security
transit-time data would presumably provide important insights
into the effects of flight schedules, different days of the week,
seasonal and weather changes, as well as security operational
configurations such as the number of open checkpoint lanes, the
type of security screening protocols, and other important elements
of the security-screening process.

In the current paper, anonymous Bluetooth MAC address
matching is used to observe security transit times over a one month
period at the Cincinnati/Northern Kentucky International Airport.
These data are then analyzed using a random-parameters hazard-
based duration model to statistically explore the factors that affect
airport security transit times. As will be shown, the model esti-
mation results provide information that is useful in quantifying the
effect that a variety of factors have on security transit times.

2. Empirical setting

The Cincinnati/Northern Kentucky International Airport was
selected as the source of data for this study. The airport serves a
wide area throughout Ohio, Kentucky, and Indiana. Since the
airport consolidated from being a hub airport, security operations
have been shifting to a new terminal facility and Fig. 1 shows the
security layout for this terminal. Referring to this figure, as travelers
enter the terminal (callout “a”), they either proceed to the ticket
counter or directly to the security screening area. As travelers

Terminal Entrance

proceed to the security screening along either side of the central
staircase, they proceed past either Bluetooth monitoring Station A
or Station B. If any traveler has a Bluetooth enabled device, their
unique media access control address (MAC address) is collected.
Travelers will wait in a queue and then be processed through one of
the ten security lanes (callout “b”). For the Cincinnati/Northern
Kentucky International Airport, checkpoint lanes are opened in
pairs (lanes are operated in groups of two), so there are effectively 5
lane-pairs. Once through security, travelers will recollect their be-
longings and head down the elevators or escalators (callout “c”).
They will finally pass Bluetooth monitoring Station C where their
MAC address will again be noted and then continue on down the
walkway to the terminals.

The Bluetooth monitoring stations used class II antennas and
sampled up to 8 times a second. Because travelers walking through
the zone of detection would register multiple entries, careful
filtering was used to eliminate repeat observations. Once the repeat
observations were removed, travel times could be determined by
matching the time of MAC address observed at either Station A or
Station B with the time observed at Station C. The difference in the
time would be the security transit time. It should be noted that
security personnel and airport employees could be filtered based
on repeat matches over various days. But filtering these observa-
tions was done with care to not eliminate repeat travelers who used
the airport multiple times over the month.

It should be noted that security transit time was the measure
recorded. This included the walk time, wait time (or time in queue),
processing time, and re-composure time (gathering belongings and
such). Under “free flow” conditions without a queue, the security
transit time was measured at about 3 min and 15 s.

3. Data collection

From November 11, 2011 to December 8, 2011, over 660,000
Bluetooth MAC address records (6200 unique MAC addresses) were

Walkway to Terminals

Fig. 1. Airport security arrival process at Terminal 3 of Cincinnati/Northern Kentucky International Airport.
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collected. These MAC addressed were successfully matched to
generate 4517 security transit-time records (this is roughly 2% of
total number of travelers going through security during this time
period). To complete the data set, the transit-time records were
joined with other data (sometimes aggregated into hourly values
and assigned to the individual observation based on travelers’ time
of arrival at Station A or Station B, see Fig. 1) including airline
seating schedules, observed total traveler volumes, security lane
configurations throughout each day, weather data and so on.
Table 1 gives a summary of the available data. The “lane-pair hours”
variable In Table 1 is the effective number of lane-pairs open during
the hour. For example, if one lane-pair was open the entire hour
and a second was open for only the last 15 min of the hour, the lane-
pair hours for this hour would be 1.25.

With regard to other variables, it should be noted that the
number of enplaning seats available for each hour is included in the
data as a proxy for traveler activity. This is a proxy of actual traveler
activity since not all available airline seats may have been sold, and
transferring travelers would not have to go through the security
process.

Finally, the weather data are included because it is speculated
that variations in weather conditions may affect the amount of
clothing and other personal articles travelers may have, which may
impact security travel times, and that inclement weather may
result in changes in traveler arrival times which may spread or
condense peak arrival-time periods.

Table 1
Variables available for security transit time hazard duration modeling.
Variable Mean Standard
deviation
Security transit time (minutes) 16.26 8.87
Average security transit time from the 15.65 3.90
previous hour (minutes)
Sunday indicator (1 if Sunday, 0 otherwise) 0.13 0.34
Monday indicator (1 if Monday, 0 otherwise) 0.18 0.39
Tuesday indicator (1 if Tuesday, O otherwise) 0.16 0.36
Wednesday indicator (1 if Wednesday, 0.14 0.38
0 otherwise)
Thursday indicator (1 if Thursday, 0 otherwise) 0.13 0.35
Friday indicator (1 if Friday, O otherwise) 0.090 0.34
Saturday indicator (1 if Saturday, O otherwise) 0.78 0.29
Weekday indicator (1 if Weekday, 0 otherwise) 0.77 0.42
Weekend indicator (1 if Weekend, 0 otherwise) 0.22 0.42
Enplaning seats available for the hour 628.69 599.31
Increase in enplaning seats from previous hour 0.48 0.50
indicator (1 if yes, 0 otherwise)
Hour with most enplaning seats available during 0.052 0.22
the day indicator (1 if yes, O otherwise)
Hour after the hour with most enplaning seats 0.075 0.26
available during the day indicator (1 if yes,
0 otherwise)
Hour before the hour with most enplaning seats 0.084 0.28
available during the day indicator (1 if yes,
0 otherwise)
Lane pair 1 traveler volume from previous hour 167.60 75.11
Lane pair 2 traveler volume from previous hour 89.64 77.37
Lane pair 3 traveler volume from previous hour 44.78 73.05
Lane pair 4 traveler volume from previous hour 12.57 37.43
Lane pair 5 traveler volume from previous hour 2.09 14.84
Total security checkpoint traveler volume from 316.67 188.83
the previous hour
Lane-pair hours during the hour 245 1.04
Lane-pair hours during the previous hour 231 1.07
Outdoor temperature (°F) 46.71 10.48
Temperature below 32 °F (1 if yes, 0 otherwise) 0.063 0.24
Temperature below 40 °F (1 if yes, 0 otherwise) 0.30 0.46
Temperature above 50 °F (1 if yes, 0 otherwise) 0.34 0.47
Rain indicator during hour (1 if raining, O otherwise) 0.27 0.45
Snow indicator during hour (1 if snowing, 0.26 0.44

0 otherwise)

4. Methodological approach

Interest is in the total security transit time, which is the time
that has elapsed from arrival at Stations A or B until the traveler
completes their journey through security Station C (see Fig. 1).
While such transit times are continuous data that can be modeled
by traditional ordinary least squares, they can also be considered as
duration data and analyzed with hazard-based duration models
which can potentially provide additional insights into important
duration effects. This is because the hazard-based approach
explicitly considers the important possibility that the probability
that transit through security will end may change the longer the
time spent in security has lasted (Paselk and Mannering, 1994;
Martchouk et al., 2011; Washington et al., 2011).

For airport security transit-time durations, hazard-based
models consider the conditional probability of a transit-time
duration ending at some time t, given that it has not ended until
time t and the hazard function can be written as (see Hensher and
Mannering, 1994; Washington et al., 2011):

_f
h(t) = T-F@© (1)

where F(t) and f(t) are the cumulative distribution function and the
density function of security transit times, respectively. The hazard
h(t) gives the rate at which security transit times are ending at time
t, given that they have lasted up to time t. The hazard function can
be increasing as security transit-time duration increases (dh(t)/
dt > 0) which indicates that the probability that a security transit-
time duration will end soon increases the longer the transit time
lasts. Alternatively, the hazard function can be decreasing as se-
curity transit-time duration increases (dh(t)/dt < 0) indicating that
the probability that a security transit-time duration will end soon
decreases the longer the transit time lasts. There is also the possi-
bility that the probability that a security transit-time duration will
end soon is independent of the length of time a transit time has
lasted (dh(t)/dt = 0).

For developing a statistical model using the hazard approach,
the effect of explanatory variables can be incorporated as (see
Washington et al., 2011):

hn(£[X) = ho(t) EXP (BXn), (2)

where Xj, is a vector of explanatory variables associated with air
traveler n, B is a vector of estimable parameters, and hg(t) is the
baseline hazard that denotes the hazard when all elements of the
explanatory-variables vector are zero.

Equation (2) can be estimated using a variety of parametric
forms of the underlying hazard function (non-parametric ap-
proaches can also used but their duration effects, how the haz-
ard changes over time, can be difficult to interpret). The most
widely used parametric forms include the Weibull and log-
logistic models. The Weibull model allows monotonically
increasing or decreasing hazard functions (implying the proba-
bility of a traveler’s security transit-time duration ending in-
creases or decreases the longer the transit time lasts). With
parameters A > 0 and P > 0, the Weibull distribution has the
density function,

f(t) = AP(o)" 1 EXP [— (At)P}, 3)
with hazard,

h(t) = AP)(26)" T, (4)
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Taking the first derivative of Equation (4) with respect to time, if
the Weibull parameter P is greater than one, the hazard increases
monotonically with trip duration (dh(t)/dt > 0); if Pis less than one,
it is monotonically decreasing with the trip duration (dh(t)/dt < 0);
and, if P is equal to one, the hazard is constant over time (dh(t)/
dt = 0).

The log-logistic model has been previously applied to travel-
time durations by Martchouk et al. (2011) and has the advantage of
allowing for the sometimes more realistic non-monotonic hazard
function. However, because more complex versions of the Weibull
model can be considered to account for unobserved heterogeneity
across observations (which would include unobserved factors such
as traveler experience, number of carryon bags and electronics,
etc.), the monotonic hazard function restriction of the Weibull
model is effectively relaxed. In our subsequent empirical work, the
log-logistic model did not perform as well as the Weibull-model
heterogeneity variants that were considered. Thus, the log-
logistic formulation is not presented in this paper.

The traditional proportional-hazards approach (see Equation
(2)) assumes that the baseline hazard function, hg(t), is homoge-
nous across observations. As mentioned above, a critical concern in
the application of hazard models to security travel times is the
possibility of unobserved heterogeneity. One way to address this is
to introduce heterogeneity by assuming a distribution of hetero-
geneity across the population (the gamma distribution has been a
popular choice for this, see for example Heckman and Singer, 1984;
Gourieroux et al., 1984; Nam and Mannering, 2000; Washington
et al., 2011). A second more general way to account for unob-
served heterogeneity is to allow some (or all) of the model pa-
rameters to vary across observations. To account for heterogeneity
in this random-parameters manner (unobserved factors that may
vary across observations), Greene (2007) developed a method for
incorporating random parameters in hazard-based duration
models (see also Washington et al., 2011 for an application of this
approach). This approach considers estimable parameters as,

Bi = B+ai (5)

where ¢; is a randomly distributed term (for example a normally
distributed term with zero mean and variance equal to ¢2).

Because maximum likelihood estimation of the random pa-
rameters hazard-based duration models is computationally
cumbersome (due to the required numerical integration of the
duration function over the distribution of the random parameters),
a simulation-based maximum likelihood method is used (see Train,
2003). The most popular simulation approach uses Halton draws
which have been shown to provide a more efficient distribution of
draws for numerical integration than do purely random draws (see
Bhat, 2003).

5. Estimation results

Model estimation results for the random parameters Weibull
hazards model are presented in Table 2 and corresponding mar-
ginal effects are presented in Table 3. With regard to the signs of the
estimated parameters, for simplicity of interpretation, we estimate
— B to get the effect that the variable has on the actual security
transit time as opposed to the effect that it has on the hazard
function (see Equation (2)). With this, positive parameters in
Tables 2 and 3 increase travel-time duration (since it results in a
negative parameter in Equation (2), which decreases the hazard
and thus increases durations).

Turning first to the interpretation of parameters that were found
to be fixed across the population of travelers, the average security
transit time for travelers in the preceding hour had a positive

Table 2
Weibull model parameter estimates of the security transit time (standard deviations
of random parameters in parentheses).

Variable Estimated t-Statistic

parameter

Fixed parameters
Constant 2.724 75.03

Average security transit time for hour from 0.0080 4.01
the previous hour (minutes)
Total security checkpoint traveler volume 0.0413 6.01
from the previous hour (in hundreds of
travelers)
Monday indicator (1 if yes, O otherwise) —0.0867 -3.83
Wednesday indicator (1 if yes, 0 otherwise) —0.0661 -3.40
Weekend indicator (1 if yes, 0 otherwise) 0.0919 477
Increase in enplaning seats from the previous —0.0602 -3.67
hour indicator (1 if yes, 0 otherwise)
Hour after the hour with most enplaning seats —0.0954 —3.48
available during the day indicator (1 if yes,
0 otherwise)
Hour before the hour with most enplaning seats —0.159 —4.25
available during the day indicator (1 if yes,
0 otherwise)
Temperature below 40 °F (1 if yes, 0 otherwise) —0.0557 -3.24
Random parameters
Hour with most enplaning seats available -0.177 —5.08
during the day indicator (1 if true, (0.351) (11.06)
0 otherwise)
Standard deviation of random parameter
Lane-pair hours during the previous hour —0.000667 —0.08
Standard deviation of random parameter (0.0376) (11.73)
Rain indicator during the hour (1 if raining, —0.0688 -3.80
0 otherwise) (0.0757) (5.64)
Standard deviation of random parameter
Weibull P parameter 2217 98.83
Number of observations 4571
Log-likelihood at convergence —3680.478

parameter, meaning that the security transit time would be higher
if the previous hour’s security transit time was high. In addition, the
total security checkpoint traveler volume from the previous hour
also produced a positive parameter estimate. These variables cap-
ture the dynamics of the security transit-time process in that re-
sidual queues from preceding time periods affect security transit
times in the current time period. The variables may also be
capturing the procedures of operating personnel and other factors
that may overlap from one time period to the next.

Table 3
Marginal effects of the security transit time (effect of a one-unit change in X on the
hazard function).

Variable Marginal
effect

Average security transit time for hour from the 0.0146
previous hour (minutes)

Total security checkpoint traveler volume from the 0.0750
previous hour (in hundreds of travelers)

Monday indicator (1 if yes, 0 otherwise) —0.1527

Wednesday indicator (1 if yes, 0 otherwise) -0.1173

Weekend indicator (1 if yes, O otherwise) 0.1705

Increase in enplaning seats from the previous hour -0.1092
indicator (1 if yes, 0 otherwise)

Hour after the hour with most enplaning seats available —0.1662
during the day indicator (1 if yes, O otherwise)

Hour before the hour with most enplaning seats available -0.2710
during the day indicator (1 if yes, O otherwise)

Temperature below 40 °F (1 if yes, 0 otherwise) —0.0998

Hour with most enplaning seats available during the day -0.3212
indicator (1 if true, 0 otherwise)

Lane-pair hours during previous the hour 0.0124

Rain indicator during the hour (1 if raining, O otherwise) -0.1511
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Indicator variables for Monday and Wednesday were both found
to be negative, indicating that Mondays and Wednesdays have
lower security travel times relative to other days of the week
(which are implicitly set to parameter values of zero). This may be
the result of factors such as different types of travelers on these
days (for example the mix of business travelers and leisure travelers
which are known to have different characteristics that would affect
security processing times as shown by Dresner, 2006) and airport
security operational procedures which may be different on these
days (with regard to the number of personnel, personnel experi-
ence, and other factors).

Similarly, the weekend indicator parameter estimate shows that
weekends were found to result in longer security travel times
relative to weekdays. Again, types of travelers and variations in
airport security operations or personnel experience may be
possible explanations.

Several indicator variables relating to the number of enplaning
seats available (from the flight schedules) were found to lower the
probability of a longer security transit times including: an indicator
variable for whether the number of enplaning seats from the pre-
vious hour increased; an indicator variable for whether the study
hour was the hour after the hour with the most enplaning seats
available for the day; and an indicator variable for whether the
study hour was the hour before the hour with the most enplaning
seats available for the day. Because the parameter estimates of all
three of these indicators are negative, they all result in lower se-
curity transit times (the marginal effects in Table 3 show that the
indicator variable for whether the study hour was the hour before
the hour with the most enplaning seats available for the day had
the biggest effect, of these indicators, on security transit times).
With regard to the enplaning seat indicator, one might expect that
more travelers and thus busier periods would result in increased
security transit times, but these enplaning-seat findings are likely
capturing the greater efficiency of travelers going through security
at busy times, perhaps different types of travelers going through
security during busy periods (the mix of business travelers and
leisure travelers), and there may be an overall improvement in
airport security efficiency during busy periods.

The weather variable, an indicator variable for temperatures
below 40 °F, was also found to significantly reduce security transit
times. While we are not certain what may be causing this effect, it
is speculated and that there may be changes in traveler pre-
paredness and/or security staffing and processing times during
such inclement weather events.

With regard to random parameters, the indicator variable for
the hour with most enplaning seats available during the day pro-
duced a negative mean parameter, but also a relatively high and
statistically significant standard deviation. With the estimated
mean and standard deviation of this parameter, the parameter has a
negative value (reducing security travel time) for 69.3% of the
travelers and a positive value (increasing security travel time) for
30.7% of travelers. This finding may reflect variations in airport
security practices in terms of staffing time periods with high
numbers of enplaning seats. In such time periods there may be
uncertainties in demand with regard to the number of travelers
arriving closer to departure times and, in the presence of this un-
certainty, airport security operations may over or under estimate
traveler volumes and this is what may be causing the variability in
this parameter estimate over the traveler population.

Lane-pair hours (the effective number of lane-pairs open during
the hour) produce a small negative effect (with a small parameter
mean) with a relatively large standard deviation. As a result,
the parameter estimate for this variable is negative (decreasing
security transit time) for 51% of travelers and positive (increasing
security travel time) for 49% of travelers. One would expect that

higher lane-pair hours would unambiguously decrease security
transit times (given the many other variables included in the model
that control for traveler demand). While this is true for a bit more
than half of the cases, it is not true for the others. This finding likely
reflects possible lags in the airport-security operation in terms of
opening additional lane-pairs, particularly during high volume
periods. For example, an hour with 3 lane-pairs open the entire
hour and another open for the last 15 min of the hour (giving a total
of 3.25 lane-pair hours) would have an above average number of
lanes open (the average is 2.45 as shown in Table 1), but if this
occurs in periods of rapidly increasing traveler demand the fact that
airport security operators did not open lane-pairs quickly enough
could produce negative parameter values for a significant number
of travelers. The ambiguity of the lane-pair parameter finding re-
flects the difficulty that airport security is having responding to
traveler demand in terms of staffing, and opening and closing lane-
pairs.

Finally, the presence of rain during the arrival hour resulted in a
random parameter that decreased security travel times for 81.8% of
travelers and increased security travel times for 19.2% of travelers.
For the portion of travelers experiencing shorter security transit
times during rain events, it is possible, depending on the severity of
the rain event, that delays or changes in departure times when
going to the airport may spread the “peaking” of traveler demand
through security resulting in shorter queues. For the 19.2% that see
security transit time increase, it could reflect minor rain events
where the presence of extra rain-related paraphernalia when going
through security is not offset by changes in airport arrival times.

6. Duration effects

A potentially important operational finding with regard to
airport security operational procedures can be extracted by
considering the shape of the hazard function and specifically how
the probability of exiting the system (having a transit security time
duration end) changes with respect to the time that a traveler being
in security has lasted. The hazard function for the estimated Wei-
bull model with random parameters is shown in Fig. 2. Fig. 2 shows
the hazard function increasing in duration (meaning the longer that
the security transit-time duration has lasted the more likely it is to
end soon) up to roughly 29 min. Ideally, airport security operations
would want to structure a security-staffing policy that would al-
ways produce a hazard function with a positive slope (dh(t)/dt > 0),
meaning that the longer that a travelers security travel time has
lasted the more likely it is to end soon. However, after 29 min the
slope of the hazard function becomes negative (dh(t)/dt < 0) and
the longer that a travelers security travel time has lasted the less
likely it is to end soon. This is an undesirable condition, and may
point to operational or staffing problems that occur roughly when
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Fig. 2. Hazard function for security transit time.
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traveler security time are in the 30-min range. Our statistical
finding suggests that very close attention be given to periods where
traveler security travel times approach 30 min to determine what
might be done operationally to keep the slope of the hazard func-
tion positive.

7. Empirical observations

The statistical assessment of Bluetooth security-transit times
isolates a number of important factors that determine the duration
of time through security checkpoints. The finding that the hazard
function begins to slope downward after 29 min suggests that there
is room for improvement in terms of when security lane-pairs
should be opened. The statistical findings suggest that airport se-
curity staffing may be less than optimal. In fact, when looking at the
base data there is ample reason to believe that airport staffing (lane-
pair openings) seems to be reactive to traveler demand instead of
being proactive to meet likely demand. Specifically, the increase in
demand during peak periods is often overlooked by security staffing
during the initial portion of the demand increase and then much of
the remainder of the peak period is spent catching up with demand
— with lane-pairs then shut down as demand drops. Fig. 3 shows a

ort Management 32 (2013) 32—38 37
sample day (November 14, 2011) of the available data. Fig. 3a shows
the observed Bluetooth transit times (244 Bluetooth match
travelers) with the hourly average transit times (horizontal bars).
Callout “i” denotes a spike in the morning peak security transit time.
Fig. 3b shows the actual hourly volume of travelers passing through
security (all travelers, whether they have Bluetooth or not). It is also
important to consider this with Fig. 3¢, which shows the number of
enplaning seats available for each hour. Notice callout “ii” which
highlights heavy security volumes for the 6:00—8:00 h. This cor-
responds to callout “vi” denoting a spike in the number of enplaning
seats available at 9:00. Finally, callout “X” in Fig. 3d shows that only 2
lane-pairs were operated during the first hour of the morning se-
curity peak (in particular the 6:00 h is the busiest hour). This again
reflects the reactive nature of the security-staffing schedule not
matching the initial increase in demand. The security staffing
regime quickly adds the remaining number of lane-pairs during the
7:00 and 8:00 h to help dissipate the queues that have formed due to
there initially being too few lanes open. Note that the number of
open lane-pairs is efficiently dropped to match security transit de-
mand during the 9:00 h.

A similar reactive security staffing schedule fails to match the
rise in security-transit demand in the afternoon peak period. Both
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the 14:00 and 15:00 h have an increase in security-transit volume
(callout “v”) which is foretold by the high number of available
enplaning seats during the 16:00 h (see Fig. 3c and note that similar
increases in security-transit volumes are observed in the current
hour when there are more enplaning seats in the following hour, as
shown by callouts “iii”/"vii” for the 10:00/11:00 h and by callouts
“iv”["viii” for the 12:00/13:00 h). Unfortunately, the afternoon
peak, callout “xii” in Fig. 3d, shows that lane-pairs were dropped
during the 15:00 h (when they were needed to satisfy the foretold
influx of travelers) and then brought back in the 16:00 h to help
dissipate the accumulated queues.

8. Summary and conclusions

To better understand the factors that affect airport security
transit times, anonymous Bluetooth media access control address
matching was used to observe security transit times over a month
long period at the Cincinnati/Northern Kentucky International
Airport. The security travel times for over 4500 travelers were
observed and a random parameters hazard-based duration model
was estimated to statistically determine the effect of variables on
transit times and to understand how the likelihood of a transit time
ending soon changes the longer the transit time lasted. The esti-
mation results show that wide variety factors affect security transit
times including the carryover effects from preceding transit times
(reflecting the dynamics in the system), the number of enplaning
seats, weather conditions, day of week, traveler volume and the
number of security open lanes.

Interestingly, our estimation results found that the hazard
function was increasing in duration (a good sign, meaning the
longer that the security transit-time duration has lasted the more
likely it is to end soon) up to roughly 29 min, but then decreasing
after that (a bad sign, meaning the longer that the security transit-
time duration has lasted the less likely it is to end soon). This post
29-min finding has important implications in that it suggests that
operational procedures are such that, once transit times approach
the 29-min mark, security-procedure processing times are funda-
mentally changing in a bad way (a similar finding was previously
reported by Nam and Mannering, 2000, in their analysis of the time
it takes emergency personnel to clear vehicle crashes and dis-
ablements from Seattle freeways). Special attention needs to be
paid to develop operating policies that avoid a negative slope on the
hazard function. Also, in a general sense, the estimation results and
general analysis of the data suggest that staffing levels appear to be
quite reactive (rather than proactive), especially with regard to
obviously influential factors such as the number of enplaning seats
available for a given hour, and this reactive stance tends to be quite
costly in terms of increased security-transit times.

The presence of random parameters in the model suggests that
there is considerable unobserved heterogeneity in our data. Clearly,
there are many individual-specific characteristics that affect
security-processing times (such as age, number of items being
carried, type of clothing and shoes, etc.) and these are being
captured to some extent with the random parameters approach we
have adopted. Still, it is clear that more extensive data that included
individual characteristics could provide further insights and this
would be a fruitful area for future research. Finally, it should be
noted that the Bluetooth data security transit-time data collected is
from a self-selected group of travelers (those with Bluetooth-

emitting devices). While there is no compelling reason to suspect
that these travelers may have different security travel times than
the non-Bluetooth emitting travelers, some caution should be
exercised when viewing the findings of this paper.
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