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ABSTRACT

ROADWAY SYSTEM ASSESSMENT USING BLUETOOTH-BASED
AUTOMATIC VEHICLE IDENTIFICATION TRAVEL TIME DATA

This monograph is an exposition of several practice-ready methodologies for automatic vehicle identification (AVI) data collection

systems. This includes considerations in the physical setup of the collection system as well as the interpretation of the data. An extended

discussion is provided, with examples, demonstrating data techniques for converting the raw data into more concise metrics and views.

Examples of statistical before-after tests are also provided. A series of case studies were presented that focus on various real-world

applications, including the impact of winter weather on freeway operations, the economic benefit of traffic signal retiming, and the

estimation of origin-destination matrices from travel time data. The technology used in this report is Bluetooth MAC address matching,

but the concepts are extendible to other AVI data sources.
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1. INTRODUCTION

What gets measured gets done,

what gets measured and fed back gets done well,

what gets rewarded gets repeated.

– John E. Jones

In recent years, new travel time data collection
technologies have emerged, which have greatly increased
the power of transportation system operators to auto-
matically measure the performance of roadway and other
facilities. The purpose of this book is to serve as a
resource for analysts who are tasked with interpreting
measured travel times from automatic vehicle identifica-
tion (AVI) systems to assess the quality of service in
transportation systems. While this document emphasizes
roadway systems, the analysis techniques presented here
could be expanded to any mode. This book is divided into
six chapters that divide the material into six modules as
follows.

N The introductory chapter provides a review of travel time
data analysis development to date and discusses concepts
of operations for different types of traffic flow.

N Chapter 2 presents a variety of analysis techniques for
reducing the data into useful performance measure
graphics, and for statistical before/after comparisons.
Detailed descriptions of the necessary computations and
data transformations are presented.

N Chapter 3 discusses issues relevant to the location of
sensors, with particular emphasis on the impact of
interrupted-flow facilities on measured travel times.

N Chapter 4 discusses probe vehicle identification on
uninterrupted flow systems.

N Chapter 5 discusses probe vehicle identification on
interrupted flow systems.

N Chapter 6 discusses probe vehicle applications to origin-
destination matrix estimation.

1.1 Transportation System Performance Measurement

Transportation is the convergence of demand for
movement from one location to another, and the supply
of the means to make that movement possible, through
various modes (passenger cars, buses, etc.). Automatic
vehicle identification (AVI) data allows individual
travelers to be time stamped at different parts of the
transportation system, enabling the quality of service to
be measured by calculating travel times between pairs
of points in the system. Travel time is the quintessential
performance measure, common to all modes and users,
that impacts how users decide if, when, and how to
travel. In addition, AVI data cast over a wide area
enables background demand to be characterized by
identifying travelers at various origin and destination
locations. Therefore, this type of data can yield
extremely valuable information to transportation
system operators to better understand demand as well
as to better characterize the supply they provide by
mode.

There are four ways in which transportation system
operational performance can be evaluated:

1. User experience. Because so many individuals interact
with transportation systems on a daily basis, it is
inevitable that a most of them form an opinion about
the level of service. While opinion is often inaccurate and
biased, it is important to be cognizant that this is the only
information available to most system users, and it often
has a profound impact on operations.

2. Modeling. The oldest and most common type of
quantitative performance analysis relies on volume data
and parameterized system information (number of lanes,
saturation flow rate, etc.) to determine the degree to
which the system is loaded, and thereby estimate the level
of service according to a performance measure such as
delay or speed. This type of modeling continues to be
important because traffic volumes are relatively easy to
obtain. However, the results of this analysis are highly
dependent on the assumptions of the model, and the
accuracy that the analyst is able to determine the model
parameters.

3. Simulation. Similar to modeling, simulation estimates
system performance. Rather than the ‘‘top-down’’
formulaic approach of a model, simulations take a
‘‘bottom-up’’ approach that models microscopic traveler
(i.e., vehicle and pedestrian) behavior and measures the
performance characteristics for these individual data
points to collectively depict the level of service in the
system. As with quantitative models, the results of
simulation are dependent on the assumptions regarding
traveler behavior, and the accuracy of the input
parameters that control the simulation.

4. Direct measurement. Another possibility is that the
performance of the system (distinct from measures of
demand or supply) can be directly measured through
observations. A variety of quantities can be measured,
with varying degrees of relevance depending on the type
of system.

This book is concerned with the last of these, direct
measurement, in light of recent technological innova-
tions that have made this type of evaluation more cost-
effective, and have made it possible to obtain relatively
large volumes of system data. With new data sets comes
the need to update analysis techniques to handle them.
One of the objectives of this book is to advance some
analysis concepts into more common usage, which
might be new to some readers.

1.2 Direct Measurement of System Performance

In this document, we are concerned with direct
measurement of system performance. The traditional
tool for direct measurement is the floating-car study (1),
where the analyst will get into a vehicle (or send a staff
member to do so) and actually drive along the corridor.
While this can be done at a very high resolution, such as
with GPS tracking (2), the overall system performance
essentially consists of the space-time positions at an
entry point and an exit point, which yields a travel time,
a travel distance, and from these, an average travel
speed. The advantage of the floating-car study is that it
does not require a substantial investment in data

1



collection infrastructure. However, the number of
samples obtained are quite low, and for moderately
sized systems (e.g., several miles long) it is difficult to
obtain a significant number of data points within a time
period.

The Travel Time Data Collection Handbook (3)
guidelines for the number of floating car runs to be
carried out to achieve a given level of statistical
confidence in estimating mean travel times are shown
in Table 1.1 and Table 1.2 respectively for ADT and
density of traffic signals. A more detailed discussion is
provided elsewhere by Quiroga and Bullock (4).
According to Table 1.1, to characterize the travel time
on a network with 3 signals per mile at 90% confidence,
we would need to have 5 data points. For a short
network, say 1 mile, at an average speed of 30 mph
(assuming a higher posted speed limit and several
stops), each floating car transit would require 2
minutes, so the entire study could be completed in 10
minutes. For a network spanning 5 miles, the amount
of time would be 50 minutes, during which it is likely
that the level of demand would vary. Adding a second
floating car would cut the time by half, but double the
cost; and it would take many more floating cars to
achieve higher confidence levels in a high-volume or
high-signal density environment. More importantly,
however, this effort would only characterize the mean
travel time for one particular time of day and traffic
condition.

The floating-car study is the most commonly used
travel time measurement technology prior to the
development of sensors capable of identifying vehicles.
In a floating-car study, the transportation agency drives
vehicles on a corridor while tracking the time that it
takes to traverse the system. This can provide a very

detailed trajectory for a single vehicle, but is rather
limited in that the entire run provides only one overall
travel time for the entire segment, and it covers only a
limited amount of time.

One strategy to increase the number of data points is
to instrument more vehicles for data collection. For
example, maintenance trucks or transit buses can be
outfitted with GPS devices so that their trajectories can
be measured. This increases the amount of exposure of
the travel time measurement. However, the number of
overall travel time measurements is still rather low, and
the data can be limited by the behavior of these types of
vehicles. Buses, for example, make stops along the
route, introducing a substantial increase in travel time
that would have to be subtracted, introducing potential
variance in the data.

Another strategy is to identify vehicles in traffic at
different locations in the system and measure the travel
time from the observation times of vehicles matched at
two locations. In the past, this has been possible
through license plate matching studies, which were
labor intensive. More recently, new technologies have
emerged that have enabled automatic vehicle identifica-
tion (AVI), making the acquisition of these data sets
much easier and less expensive—as well as enabling 24-
hour coverage.

With the ability to generate large data sets, there is
now an opportunity to not only compute an average or
median travel time, but also to characterize the
variability (or reliability) of travel time. It is possible
to establish measures of system performance on the
basis of not only average values, but more specific
criteria such as the 90th percentile of delay.

The objective of the document is to advance the state
of the practice in the analysis of this data, by

TABLE 1.1
Test vehicle sample sizes, by traffic volume (3).

Average Daily Traffic

(ADT) Volume Per Lane

Average Coefficient

of Variation (%)

Sample Sizes

90% Confidence,

+/2 10% Error

95% Confidence,

+/2 10% Error

95% Confidence,

+/2 5% Error

, 15000 9 5 6 15

15000–20000 11 6 8 21

. 20000 17 10 14 47

TABLE 1.2
Test vehicle sample sizes by signal density (3).

Traffic Signal Density

(signals per mile)

Average Coefficient

of Variation (%)

Sample Sizes

90% Confidence,

+/2 10% Error

95% Confidence,

+/2 10% Error

95% Confidence,

+/2 5% Error

, 3 9 5 6 15

3–6 12 6 8 25

. 6 15 9 12 37

2



demonstrating that the resolution of this data affords
a more useful characterization of travel time than
measures of central tendency. This book focuses on
applications of AVI data sets in travel time measure-
ment applications on non-interrupted-flow (limited-
access highways) and interrupted-flow roadways
(surface streets), as well as origin-destination studies.
The technology used to generate the data for the
observations in this study is the matching of
Bluetooth MAC addresses, but the principles des-
cribed in this document can be applied to any AVI
travel time measurement methodology.

2. ANALYTICAL TECHNIQUES

This chapter discusses various techniques for describ-
ing and analyzing data sets for travel time and travel
time reliability, and to facilitate before/after studies.
The information in this chapter enables the analyst to
conduct basic comparison tests using automatic vehicle
identification (AVI) travel time data with spreadsheet
tools. Actual spreadsheets that can be used for such
analysis are explained in detail to assist in the setup of
an analysis tool from a blank slate.

2.1 Processing and Visualizing Raw Data

The example data set used in this chapter is taken
from a section of State Road 37 in Fishers, Indiana.
Figure 2.1 provides a map of the section. The distance
between the two Bluetooth monitoring sensors (BMS)
in this study was approximately 3 miles, and the posted
speed limit on SR 37 is 55 mph. For simplicity of
discussion, we will presume that the free flow speed is
also 55 mph; this means that the free flow travel time on
this section is 3.3 minutes. Four signalized intersections
exist along the route.

Figure 2.2 shows a 24-hour view of measured travel
times for southbound vehicles in this system. The
vertical scale of the figure has been extended to
illustrate the large number of outliers present in the
raw data. There are many measured travel times well
above 10 minutes, which is about three times as long as
the travel time at the speed limit. These outliers almost
certainly represent travelers briefly leaving the road
(e.g., at a gas station, coffeehouse, etc.) between the two
measurement points.

To describe the throughput performance of this
roadway section, we are generally not interested in
these data points, but instead want to know the travel
times of vehicles that did not depart and reenter. In this
particular example data set, the range of ‘‘typical’’ travel
times is unambiguously represented by the dense point
cloud hovering just above the 3.3 minute line, which is
distinct from the outliers well above it. However, in
longer corridors or congested conditions, the travel
times of interest may extend into the domain of outliers.
Some travelers may have experienced very poor travel
times because their vehicle travelled at a different speed
from what was used to coordinate traffic signals (such

as a freight truck). Even in these cases, the greater travel
times generated are not indicative of the experience of
the larger group, and are generally referred to as
outliers.1

In Figure 2.2, there appear to be a convenient cutoff
region at approximately six minutes. However, we
would like to be able to compare this particular data set

Figure 2.1 Data collection on SR 37: Location of intersec-
tions and Bluetooth monitoring stations (BMS).

1Note that the scope of this discussion is throughput performance.
Most roadways apart from freeways provide accessibility to goods
and services. The authors acknowledge that outliers that do not
reflect the throughput characteristics of the roadway may contain
vital information concerning its ability to access goods and
services, such as for an origin-destination study—as will be
investigated in Chapter 6.
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with others in which there might be increased delay. It
is preferable to use a filter based on a reasonable
assumption that can be more generally applied, rather
than use arbitrary cutoff points. Although it may be
possible to develop some sort of self-filtering metho-
dology that uses properties of the data to exclude
outliers, presently a resource is unlikely not immedi-
ately available to an analyst that is handed a set of raw
travel time data. Rather, some engineering judgment is
needed, which should have as its primary consideration
the objective of the study. In this example, we will
leverage information about the signal timing plan.

In this study, let’s first define the objective: to
measure the performance of the signal timing plan
under typical conditions. This means that incidents,
which would exceptionally skew the data, are not our
primary interest. Therefore, it is not our interest to
explore travel times of 20–30 minutes or more. While
that data would be interesting to understand the impact
of an incident, if we happened to collect such a data set
it would not fulfill our need to understand typical
conditions.

In this signal system, the longest cycle length (and the
one that is used on Friday afternoons) is 116 seconds.2

Without getting into details of the control plan, let us
assume, for simplicity, that the absolute minimum
green time for any arterial movement is 40 seconds. A
motorist with exceptionally poor luck who is the first
vehicle to stop on red at every signal would encounter
an increase in travel time of approximately (116 – 40) 6
4 5 304 seconds, or 5.1 minutes. When added to the
baseline travel time of 3.3 minutes, this suggests a
‘‘worst-case’’ travel time of 8.4 minutes. Rounding up to
9 minutes provides a useful and rather cautious filter
for this signal system.

As with all estimates based upon ‘‘engineering
judgment,’’ this filter is attached strongly to its context,
namely the study objective and the characteristics of the
data set. Recurring oversaturation, special events, or
road construction could substantially increase typical
travel times beyond 9 minutes. The analyst must be
cognizant of such possibilities when considering how to
eliminate outliers.

Having filtered the data, it is now possible to use it to
characterize travel time and travel time reliability
during a given time period. Figure 2.3 gives an over-
view of how a histogram and CFD can be quickly
constructed in a spreadsheet.

The filtered raw data is listed under column A;
column B is an (optional) conversion from seconds to
minutes. Column C is a function that provides the bin
value of each travel time (a function to round down
would also work). A completely separate range of cells
in columns E-H produces the histogram data. The
desired bin values are entered in column E; column F
contains a function that counts the number of bins in
column C that are equal to the bin value (where the
range extends down to row 1000 in this example);
column G normalizes these by dividing by the total
number of entries in that same range; and finally
column H produces the CFD by, in each row, adding
the current row value in column G to the prior row’s
value in column H.

The resulting histogram, CFD, and descriptive
statistics from this data set are presented in
Figure 2.4. All of the statistical values are prepared
by applying different functions to column B of the
spreadsheet shown in Figure 2.3. Both the histogram
and CFD show that the travel time distribution is
skewed slightly to the right, with a heavy tail on the
upper end of the distribution. This is a rather common
shape for travel time distributions to have. Because of
the skew, the mean can sometimes be a rather poor
measure of central tendency. In Figure 2.4, for exam-
ple, the core of the distribution appears visually
centered around approximately 4 minutes. The mean
travel time is 4.12 minutes, which is slightly to the

Figure 2.2 24 hours of raw data for southbound vehicles
(Friday, 5/28/2010).

2If the signal timing data is unknown, or a fixed cycle length is not
used, the analyst may choose to make an educated guess. Typical
cycle lengths vary by agency and system, but 120–180 seconds
would be a reasonable range for most arterial systems, while 60–
120 seconds is reasonable for central business district areas.
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right—whereas the median (50th percentile) value of
3.96 minutes is a better reflection of the central
tendency of this distribution. In this example, these
distinctions might seem rather trivial, but on longer
corridors with more variability, the difference can be
substantial. The use of median values is similar to how
income distributions, which have similarly heavy tails,
are usually discussed.

With regard to the reliability of the data, this chapter
recommends that the analyst consider the interquartile
range (IQR). The IQR is defined as the difference
between the 75th and 25th percentiles, which is the range
of variation experienced by 50% of the sampled
vehicles. This value can be somewhat more informative
than standard deviations, when the underlying data

does not match a normal (Gaussian) distribution very
well.

The 25th percentile, median, and 75th percentile are
also helpful to compare large numbers of data sets
against each other by using a ‘‘box-whisker’’ plot, as
illustrated in the next series of figures. In Figure 2.5, the
raw data for southbound travel times are plotted over
the entire data collection period spanning from 5/28/
2012 through 7/19/2010 (data from the first several days
of June were lost because of an equipment malfunc-
tion). Only vehicles entering the system between 1500
and 1900 are included in this visualization. While the
plot of the raw data gives a general sense of the range of
the point cloud, the central tendency of the distribution
is rather hard to distinguish.

Figure 2.3 Histogram construction in Excel.

Figure 2.4 Histogram, CFD, and descriptive statistics for southbound vehicles on Friday, 5/28/2010, 1500–1900.
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Figure 2.6 shows a box-whisker plot representing the
same data. The ‘‘box’’ in these plots shows the 25th

percentile (bottom), median (bar in the middle), and
75th percentile (top). The standard box-whisker plot
uses the min and max values for the ‘‘whiskers.’’
However, with this type of data, it is more useful to
use the 5th and 95th percentiles since the absolute
minimum values tend not to vary from day to day, and
the maximum values are not very meaningful in any
case, because they are determined primarily by how the
data is filtered for outliers. By assigning the 5th and 95th

percentile values to the whiskers, they represent the
range of 90% of the observations, while the box
represents the range of 50% of the observations. This
representation of the data makes it easier to visually

detect trends, particularly in the IQR (which corre-
sponds to the height of the boxes), that can only be
guessed at from the raw data. Notably, it is clear from
Figure 2.6 that on most days, the median travel time is
closer to the 25th percentile than the 75th percentile—
therefore it is not usually in the center of the point cloud
(as might be implied by Figure 2.5). Additionally, the
upper whisker is almost always longer than the lower
whisker. This reveals that the upper tails of the
distribution are fairly extended, most of the time.

We are also able to point out certain days of the week
in which travel time could be considered ‘‘reliable’’ for
this movement. 6/12/2010, 6/19/2010, 6/26/2010, and
successive Saturdays (highlighted by arrows) all have not
only shorter travel times than the rest of the week, but

Figure 2.5 Raw data for southbound vehicles (1500–1900), 5/26/2010–7/19/2010.

Figure 2.6 Box-whisker plot of southbound travel times (1500–1900), 5/26/2010–7/19/2010.
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reduced IQR, as well as reduced ranges spanning the 5th

and 95th percentiles. Interestingly, the Sundays that
occur just after them have rather different character-
istics. This is a good example of how signal control can
influence the operating characteristics of a system; a
different timing plan is used on Sundays on this corridor.

2.2 Converting Travel Time on Heterogeneous
Road Segments

When comparing multiple roadways, different sec-
tions on a roadway, or different directions on the same
roadway, it is difficult to draw useful conclusions when
the free flow travel times for the routes are unequal, and
therefore the CFDs of the different routes have some
intrinsic differences—namely, the travel time on one
route will always be higher or lower, and therefore its
central tendency will always be to the right or left.

To deal with this problem for comparing hetero-
geneous routes, there are two possibilities:

N Travel time can be converted to speed by dividing the

route distance by the travel time (e.g., dividing the

distance in miles by the travel time in hours gives the

speed in miles per hour). This conversion is more relevant

to uninterrupted-flow facilities (freeways).

N Travel time can be converted to delay per mile by

subtracting the free flow travel time (the distance divided

by the free flow speed) from the measured travel time,

and dividing by the length of the road in miles. This

conversion is more relevant to interrupted-flow facilities

(surface streets).

An example is presented in the following series of
figures. Figure 2.7 shows a map of two sections on I-65
south of Lafayette, Indiana. Three travel time sensors
were situated on the corridor at mile marker (mm)
166.0, mm 163.3, and mm 159.3. The distances of the
two sections created by these sensors are indicated on
Figure 2.7. The example travel time data shown here
was measured on 2/14/2010 from 1400–1800.

Figure 2.8 shows the CFDs of travel time on the two
sections. As we would expect, the travel time on the
shorter section is lower than that of the longer section
(i.e., the CFD for the shorter section is to the left).
While it may be possible to make some inferences about
the shape, this is challenging without putting the travel
time into context.

Figure 2.9 shows the CFDs of speeds. This allows
the two sections to be compared. The speed limit of 70
mph is shown on the graph. The graphs indicate that
the median speed is closer to 75 mph. Speeds are
slightly lower on the section between mm 163.3 and
166.0, likely because of the curve on that section
(Figure 2.7).

To illustrate the conversion of travel time to delay
per mile, an arterial example is more appropriate than a
freeway example. Figure 2.10 shows a map of two
sections on SR 37 in Noblesville, Indiana. Three travel
time sensors are indicated in the figure. Travel time
data was collected on 6/17/2010 from 1500 to 1900.

Figure 2.11 shows the CFDs of travel time; As
before, vehicles on the longer section have greater travel
time. However, the difference is rather substantial at

Figure 2.7 Map of locations on I-65.
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almost two minutes, whereas the difference in the
section lengths is only 0.4 miles. Figure 2.12 shows the
CFDs of the delay obtained by subtracting the free flow
travel time (at the posted speed limit of 55 mph) and
dividing by the length of each roadway. The shapes of
the curves are almost the same, and although the curves
are a bit closer to each other, it is clear that there is
considerably more delay on the segment between BMS-
1 and BMS-2.

2.3 Number of Samples for Before-After Studies

Often, it is desirable to compare two data sets in
order to ascertain the value of an investment: a
geometric improvement, traffic signal retiming, signal
or roundabout installation, and so forth. An important
question relevant to before-after studies is, how many
samples are needed to be able to reasonably differentiate
between two different travel time conditions?

To seek an answer to this question, a study was
recently conducted (5) using simulation, where all of the
travel times could be exactly known, to generate a
family of data sets under varying conditions. The
offsets at a particular intersection were transitioned
through a range of possible values, producing some
conditions that were highly similar to the baseline
(when the difference between offsets was small), and

other conditions that were completely different (when
the difference was great). This was done in a simulation
environment to be able to compare subsamples against
the entire population. Concepts from information
theory were then applied to the data to determine the
number of samples needed to be able to statistically
differentiate two different data sets for a given
confidence level.

Figure 2.13a shows how the travel time CFDs evolve
with the signal offset. As will be discussed in more
detail in Chapter 5, it is possible to distinguish between
those CFDs that represent platoon arrival prior to the
start of green (shown in Figure 2.13b), in which most
vehicles experience some queuing delay; and those
representing platoons being cut off by the end of green
(Figure 2.13b), which take on bimodal distributions
that indicate stopped and unstopped vehicles.

The results of the study are shown in Figure 2.14.
This plot shows, for a given offset, the number of
samples required to distinguish, at a 90% confidence
level, the difference between conditions at that offset,
and a ‘‘baseline’’ condition where the offset is zero. The
results show that the more substantial the difference in
conditions, the fewer samples needed. The minimum
point of the graph occurs at an offset of 60 seconds. The
difference between a 60-second offset and the baseline is
equivalent to having all vehicles arriving at a red signal,

Figure 2.9 CFDs of southbound speeds on I-65, 2/14/2010, 1400–1800.

Figure 2.8 CFDs of southbound travel times on I-65, 2/14/2010, 1400–1800.
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Figure 2.10 Map of locations on SR 37.
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versus having all vehicles arriving on green.3 In this
case, a very small number of samples are needed to
distinguish the difference because the change in central
tendency is very large. For smaller changes in offset,
representing more subtle differences, more samples are
needed. The traditional numbers of samples recom-
mended for travel time studies (Table 1.2) are shown as
horizontal lines. Except for the most drastic changes to
the offset, these sample sizes are insufficient.

Ultimately, the number of samples needed relates to
the desired resolution of changes that the analyst wishes
to be able to confidently distinguish. To statistically
verify major incidents or other extreme changes in
conditions, only a few samples are needed. Changing
the offset from 0 to 60 is roughly equivalent to causing
vehicles to stop where they did not stop before. Only
five samples are needed—a number that can rather
easily be obtained in a floating-car study (Table 1.2).
To investigate more subtle changes in the facility
operation, more samples are needed. For the purpose
of determining the travel time impact of changes in

signal control, these results show that around 40–60
samples would generally be needed to detect 10-second
shifts in offsets, which would approximately correspond
to 10-second shifts in travel time. It would be quite
expensive to collect this amount of data using tradi-
tional floating car techniques. This illustrates one of the
reasons why AVI data collected from Bluetooth MAC
address readers is so attractive for collecting operations
oriented data.

2.4 Statistical Tests to Support Before-After Studies

It is often desired to compute the statistical
significance of a test result, which lends additional
credibility to the outcome of an action taken to
influence travel times. The meaning of a test result
should be considered carefully; however, the lack of
statistical ‘‘significance’’ is not always synonymous with
the lack of substantial impact (6). A statistical test will
determine, to a specified degree of confidence, whether
the different characteristics of two samples are unlikely
to have resulted from random variation. A statistical test
is based on the concept of the ‘‘null hypothesis,’’ that
there is no statistical difference between two distribu-
tions. The test is only capable of rejecting or not

Figure 2.11 CFDs of southbound travel time on SR 37, 6/17/2010, 1500–1900.

Figure 2.12 CFDs of southbound delay on SR 37, 6/17/2010, 1500–1900.

3The curve begins moving upward again above 60 seconds,
because the arrivals begin moving back into green. The meaning
of signal offset is described in more detail in Chapter 5.
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rejecting the null hypothesis. Failure to ‘‘pass’’ the test
only shows that the effect is not determined to be sta-
tistically significant at that particular confidence level.

Most statistical tests are intended for normally
distributed data (i.e., it is assumed that the measured
parameter in the underlying populations follows a
Gaussian, or normal distribution). Student’s t-test is an
example. These tests lose power when the data is
increasingly different from normal, meaning that they
might not detect a statistically significant difference
between two data sets, even when the distributions have
visually apparent differences. When data sets are clearly
not normally distributed, an alternative would be to use
a nonparametric test. In general, however, nonpara-
metric tests are less ‘‘powerful’’ than parametric ones, in
the statistical sense, where ‘‘power’’ means the prob-
ability that the test correctly rejects the null hypothesis.
This means that nonparametric tests generally require
larger sample sizes to be able to draw conclusions with
the same degree of confidence.

Most spreadsheets have internal functions to carry
out a t-test. Figure 2.15 shows an example spreadsheet
t-test, showing how to obtain the P-value (cell B2), as
well as the degrees of freedom (cell B3) and t-value (cell
B1), if desired. In this case, we seek a low P-value to
reject the null hypothesis that the two distributions are
drawn from the same population. In this case, the P-
value of 2.24 6 1027 is very likely to be significant
(meaning that we reject the null hypothesis, and
conclude that the two samples are drawn from different
population distributions), depending on the choice of
the selected a value for significance. For example, if we
choose a 5 0.01, or a 99% confidence level, this result
would be considered statistically significant because
2.24 6 1027 , a 5 0.01.

The Mann-Whitney U-test (7) is a non-parametric
test for differentiating between two distributions that
does not require the underlying data to be normally
distributed. We present this test here because it is
relatively straightforward to carry out in a spreadsheet,
and is a rather common nonparametric test that is used
for similar situations as the t-test—namely, for compar-
ing independent observations that can be rank-ordered.
As with the t-test, we seek a low enough P-value to
reject the null hypothesis that the two distributions are
drawn from the same population. This test relies upon a
rank-ordering (sorting of values from least to greatest)
of all of the data in each data set with respect to the
combined data sets; the sum of the ranks is then
compared to the numbers of samples in each group to
compute the test statistic. Figure 2.16 explains how to
carry out this test in a spreadsheet. Note that the P-
value is slightly higher at 1.23 6 1025.

Another nonparametric test that is highly sensitive
for detecting horizontal differences between two curves
is the Kolmogorov-Smirnov test (7). To conduct the
test, the D-statistic is first calculated. D is the maximum
vertical distance between the two cumulative frequency
diagrams, which can be calculated as shown in
Figure 2.17. A critical D-value (Dcrit) is calculated by:

Dcrit~z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1zn2

n1n2

r
ð1Þ

where n1 and n2 are the numbers of bins in the two
CFDs, and z is a quantity that is related to another
value called the limiting cumulative distribution func-
tion, L(z). The formula to compute L(z) is iterative, and
consequently difficult to set up in a spreadsheet.
Instead, a lookup table can be used to find the value
of L(z). From this, a P-value can be calculated simply
by:

P~1{L zð Þ ð2Þ

Figure 2.17 shows an example of spreadsheet for-
mulas necessary to execute the comparison. The data
table that drives the lookup function to find L(z) is
shown in Table 2.1.

Figure 2.13 Travel time CFDs for each 5-second offset for
entire cycle length. The travel time distributions associ-
ated with early arrivals is from one family of distributions
and the late platoon arrivals are from a different family of
distributions (5).
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Figure 2.15 Conducting a t-test in Excel.

Figure 2.14 Number of samples needed to differentiate travel time distributions between a simulation run using an offset of zero,
versus other settings. The cycle length is 116 seconds. (Data source: (5).)
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Example test statistics are shown for four different
before-after comparisons of travel time in Figure 2.18.
The data used in these examples represent travel times
in the signalized arterial network shown in Figure 2.1,
and were collected over a series of weeks in May
through June 2010. The ‘‘before’’ data (D1) is the same
as previous shown in Figure 2.4. Four different ‘‘after’’
data sets (D2, D3, D4, D5) were collected on
subsequent Friday afternoons during which various
alternative signal timing plans were tested. The purpose
of this test exercise was to test the impact of various
optimization objectives (25).

Each plot in Figure 2.18 shows the resulting P-value
obtained from the t-test (PTT), the Mann-Whitney U-
test (PMW), and the Kolmogorov-Smirnov test (PKS).
Conclusions of statistical significance using a 1%

confidence level are summarized in Table 2.2.

N In Figure 2.18a, the distribution shifts to the right (an

increase in travel time), and all three tests find a highly

statistically significant result.

N Figure 2.18b shows that the distribution changes shape

to exhibit bimodal characteristics. The median travel

time remains approximately the same. The t-test and

Mann-Whitney test do not find a significant result, while

the Kolmogorov-Smirnov test finds a result that would

be significant at the 1% level.

N Figure 2.18c shows a distribution shift to the left (a

decrease in travel time). The t-test does not show a

statistically significant result, while the Mann-Whitney

test shows a significant result at the 1% level, and the

Kolmogorov-Smirnov test shows a significant result at

the 5% level.

N Figure 2.18d indicates another transition to a bimodal

distribution, except that it is less symmetric about the

median. None of the tests concludes a statistically

significant change. However, note that PKS is much

smaller than PTT and PMW.

In summary, the choice of statistical test is a
nontrivial consideration. The most common test,
Student’s t-test, is a reasonable choice when the data
is normally distributed, which is more likely to occur on
longer segments and on continuous-flow facilities. A
nonparametric test such as the Mann-Whitney U-test or
the Kolmogorov-Smirnov test is more appropriate
when the data is not normally distributed, which is
more likely the case on shorter segments, especially with
signal control. The Kolmogorov-Smirnov test is cap-
able of distinguishing significant differences in distribu-
tions even when one distribution is bimodal, as in
Figure 2.18b.

While statistical significance can be helpful in
establishing the effect of a treatment with some
certainty, and is sometimes required, there are several
pitfalls that the analyst should be careful to avoid (6).
The failure of a data set to ‘‘pass’’ a statistical test (i.e.,
when the null hypothesis cannot be rejected, or when
the P-value is greater than the confidence level cutoff)
does not mean that there was no effect at all. A lack of

4Credit for these formulas: Marc Brysbaert. See also: http://www.
palgrave.com/psychology/brysbaert/students/excelguidelines/run-
Mann-Whitney-test-Excel.pdf NOTE: these formulas are not
accurate for small sample sizes (under 20 samples).

Figure 2.16 Conducting a Mann-Whitney U-test in Excel.4
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Figure 2.17 Conducting a Kolmogorov-Smirnov test in Excel.
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TABLE 2.1
Looking up the value of L(z) based on z, for the Kolmogorov-Smirnov statistic (8).

z L(z) z L(z) z L(z) z L(z)

0.280 0.000 001 000 0.870 0.564 546 000 1.460 0.971 846 000 2.050 0.999 552 000

0.290 0.000 004 000 0.880 0.579 070 000 1.470 0.973 448 000 2.060 0.999 588 000

0.300 0.000 009 000 0.890 0.593 316 000 1.480 0.974 970 000 2.070 0.999 620 000

0.310 0.000 021 000 0.900 0.607 270 000 1.490 0.976 412 000 2.080 0.999 650 000

0.320 0.000 046 000 0.910 0.620 928 000 1.500 0.977 782 000 2.090 0.999 680 000

0.330 0.000 091 000 0.920 0.634 286 000 1.510 0.979 080 000 2.100 0.999 705 000

0.340 0.000 171 000 0.930 0.647 338 000 1.520 0.980 310 000 2.110 0.999 728 000

0.350 0.000 303 000 0.940 0.660 082 000 1.530 0.981 476 000 2.120 0.999 750 000

0.360 0.000 511 000 0.950 0.672 516 000 1.540 0.982 578 000 2.130 0.999 770 000

0.370 0.000 826 000 0.960 0.684 636 000 1.550 0.983 622 000 2.140 0.999 790 000

0.380 0.001 285 000 0.970 0.696 444 000 1.560 0.984 610 000 2.150 0.999 806 000

0.390 0.001 929 000 0.980 0.707 940 000 1.570 0.985 544 000 2.160 0.999 822 000

0.400 0.002 808 000 0.990 0.719 126 000 1.580 0.986 426 000 2.170 0.999 838 000

0.410 0.003 972 000 1.000 0.730 000 000 1.590 0.987 260 000 2.180 0.999 852 000

0.420 0.005 476 000 1.010 0.740 566 000 1.600 0.988 048 000 2.190 0.999 864 000

0.430 0.007 377 000 1.020 0.750 826 000 1.610 0.988 791 000 2.200 0.999 874 000

0.440 0.009 730 000 1.030 0.760 780 000 1.620 0.989 492 000 2.210 0.999 886 000

0.450 0.012 590 000 1.040 0.770 434 000 1.630 0.990 154 000 2.220 0.999 896 000

0.460 0.016 005 000 1.050 0.779 794 000 1.640 0.990 777 000 2.230 0.999 904 000

0.470 0.020 022 000 1.060 0.788 860 000 1.650 0.991 364 000 2.240 0.999 912 000

0.480 0.024 682 000 1.070 0.797 636 000 1.660 0.991 917 000 2.250 0.999 920 000

0.490 0.030 017 000 1.080 0.806 128 000 1.670 0.992 438 000 2.260 0.999 926 000

0.500 0.036 055 000 1.090 0.814 342 000 1.680 0.992 928 000 2.270 0.999 934 000

0.510 0.042 814 000 1.100 0.822 282 000 1.690 0.993 389 000 2.280 0.999 940 000

0.520 0.050 306 000 1.110 0.829 950 000 1.700 0.993 823 000 2.290 0.999 944 000

0.530 0.058 534 000 1.120 0.837 356 000 1.710 0.994 230 000 2.300 0.999 949 000

0.540 0.067 497 000 1.130 0.844 502 000 1.720 0.994 612 000 2.310 0.999 954 000

0.550 0.077 183 000 1.140 0.851 394 000 1.730 0.994 972 000 2.320 0.999 958 000

0.560 0.087 577 000 1.150 0.858 038 000 1.740 0.995 309 000 2.330 0.999 962 000

0.570 0.098 656 000 1.160 0.864 442 000 1.750 0.995 625 000 2.340 0.999 965 000

0.580 0.110 395 000 1.170 0.870 612 000 1.760 0.995 922 000 2.350 0.999 968 000

0.590 0.122 760 000 1.180 0.876 548 000 1.770 0.996 200 000 2.360 0.999 970 000

0.600 0.135 718 000 1.190 0.882 258 000 1.780 0.996 460 000 2.370 0.999 973 000

0.610 0.149 229 000 1.200 0.887 750 000 1.790 0.996 704 000 2.380 0.999 976 000

0.620 0.163 225 000 1.210 0.893 030 000 1.800 0.996 932 000 2.390 0.999 978 000

0.630 0.177 753 000 1.220 0.898 104 000 1.810 0.997 146 000 2.400 0.999 980 000

0.640 0.192 677 000 1.230 0.902 972 000 1.820 0.997 346 000 2.410 0.999 982 000

0.650 0.207 987 000 1.240 0.907 648 000 1.830 0.997 533 000 2.420 0.999 984 000

0.660 0.223 637 000 1.250 0.912 132 000 1.840 0.997 707 000 2.430 0.999 986 000

0.670 0.239 582 000 1.260 0.916 432 000 1.850 0.997 870 000 2.440 0.999 987 000

0.680 0.255 780 000 1.270 0.920 556 000 1.860 0.998 023 000 2.450 0.999 988 000

0.690 0.272 189 000 1.280 0.924 505 000 1.870 0.998 145 000 2.460 0.999 989 000

0.700 0.288 765 000 1.290 0.928 288 000 1.880 0.998 297 000 2.470 0.999 990 000

0.710 0.305 471 000 1.300 0.931 908 000 1.890 0.998 421 000 2.480 0.999 991 000

0.720 0.322 265 000 1.310 0.935 370 000 1.900 0.998 536 000 2.490 0.999 992 000

0.730 0.339 113 000 1.320 0.938 682 000 1.910 0.998 644 000 2.500 0.999 992 500

0.740 0.355 981 000 1.330 0.941 848 000 1.920 0.998 744 000 2.550 0.999 995 600

0.750 0.372 833 000 1.340 0.944 872 000 1.930 0.998 837 000 2.600 0.999 997 400

0.760 0.389 640 000 1.350 0.947 756 000 1.940 0.998 924 000 2.650 0.999 998 400

0.770 0.406 372 000 1.360 0.950 512 000 1.950 0.999 004 000 2.700 0.999 999 000

0.780 0.423 002 000 1.370 0.953 142 000 1.960 0.999 079 000 2.750 0.999 999 400

0.790 0.439 505 000 1.380 0.955 650 000 1.970 0.999 149 000 2.800 0.999 999 700

0.800 0.455 857 000 1.390 0.958 040 000 1.980 0.999 213 000 2.850 0.999 999 820

0.810 0.472 041 000 1.400 0.960 318 000 1.990 0.999 273 000 2.900 0.999 999 900

0.820 0.488 030 000 1.410 0.962 486 000 2.000 0.999 329 000 2.950 0.999 999 940

0.830 0.503 808 000 1.420 0.964 552 000 2.010 0.999 380 000 3.000 0.999 999 970

0.840 0.519 366 000 1.430 0.966 516 000 2.020 0.999 428 000

0.850 0.534 682 000 1.440 0.968 382 000 2.030 0.999 474 000

0.860 0.549 744 000 1.450 0.970 158 000 2.040 0.999 516 000
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statistical significance also does not mean that the
impact was not substantial. It is also possible that not
enough samples are available to be able to make the
determination. Finally, the level of confidence severely
determines the test outcome, but there is rarely any
substantive reason to select a particular value (10%,
5%, 1%) other than to match the P-values that arise
from the test. In closing, we would stress that being able
to visually compare CDFs is perhaps more important
when assessing the impact on travel time.

3. BEST PRACTICES FOR SENSOR PLACEMENT
FOR INTERRUPTED FLOW

A major consideration in setting up sensors for
vehicle identification is the locations where the sensors
are to be installed. Depending on the type of detection
technology selected, sensors for capturing vehicle
identification characteristics typically require dedicated
access to power and perhaps communications. This can
be a challenge in many transportation systems, because
there are often few locations where roadside infra-
structure is available to provide access to these
elements. This chapter discusses issues specific to
placement of Bluetooth MAC address sensors on
interrupted flow facilities.

The high traffic volumes and essential status of most
freeways often provides a rationale for investment in
the construction of permanent sensing stations. To
economize, these stations can often be co-located with
dynamic message signs (DMS) or other monitoring
infrastructure such as speed detectors, where power and
communications access is already available. These
existing facilities are typically located away from
interchanges (e.g., it is undesirable to present motorists
with information on a DMS when they are preparing to
merge or exit), meaning that the data from freeway
locations is typically high quality.

For surface streets, there are essentially two possible
locations for detectors—at intersections and at mid-
block locations. There are considerable advantages and
disadvantages to each option:

1. At intersections, there are often existing power sources,
such as for street lights and traffic signals. Communi-
cations infrastructure can sometimes be leveraged at
signalized intersections. However, the quality of the data
can suffer because of traffic interactions at the intersec-
tion, as will be demonstrated in the next section.

Figure 2.18 Pairwise comparisons with P-values resulting
from statistical tests for Friday data.

TABLE 2.2.
Statistical significance (at the 1% confidence level) based on
statistical test for the four different comparisons of distributions
in Figure 2.18.

Comparison

Student’s

t-test

Mann-Whitney

U-test

Kolmogorov-

Smirnov test

D1 vs. D2 3 3 3

D1 vs. D3 3

D1 vs. D4 3

D1 vs. D5
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2. At midblock locations, the data is higher quality because
vehicles are interacting less with other vehicles and control
devices. It can be more expensive to establish dedicated
power and communications, although these costs can be
reduced by supporting detectors with solar power and
cellular communications.

3.1 Case Study Comparing Intersection and Midblock
Sensor Locations

Pictures of alternative sensor deployment locations
are shown in Figure 3.1. Battery-powered, temporary
sensors can be secured to fixed roadside infrastructure
such as road signs (Figure 3.1a, Figure 3.1b) and light
poles (Figure 3.1c). Permanent sensors, requiring dedi-
cated power and communications, can be established at
intersections using traffic signal cabinets (Figure 3.1d).

Midblock permanent stations might be possible to set
up by leveraging agency facilities positioned along the
roadside (Figure 3.1e), or accessing other power
sources (Figure 3.1f). In absence of such infrastruc-
ture, power and communications would need to be
installed to establish a permanent station at a mid-
block location, or rely on solar recharging and/or
wireless communications.

Midblock installations are preferable, but in the real

world, there are often practical limitations on sensor

deployment. It can be difficult, for example, to establish

permanent midblock stations on most arterials. The

tradeoff in selecting intersection or midblock location is

illustrated by results from a field deployment.

Figure 3.2 shows an aerial view of the test system,

which is a 4-intersection segment of SR 37 in

Noblesville, Indiana. Vehicle IDs were measured from

Figure 3.1 Example vehicle sensor deployments (11).

17



two intersection locations (I-01 and I-04) and two
‘‘midblock’’ locations over 1000 ft upstream of those
intersections (MB-01 and MB-04), well outside of the
maximum queue lengths (9).

Figure 3.3 compares CFDs of the travel times
measured from intersection to intersection with those
measured from midblock to midblock, for both
directions on the arterial on two different dates:
Figure 3.3a shows northbound travel times on 6/20/
2009; Figure 3.3b shows northbound travel times on 7/
25/2009; Figure 3.3c shows southbound travel times on
6/20/2009; and Figure 3.3d shows southbound travel

times on 7/25/2009. In each case, the midblock travel
time CFDs are between 1 and 2 minutes to the right of
the intersection CFDs. This additional travel time at
the midblock locations is attributable in part to the
longer distance between MB-01 and MB-04 than
between I-01 and I-04. However, the variation in the
separation of the intersection and midblock CFDs
shows that the difference is also attributable to the fact
that intersection delays are not captured by the
intersection CFDs. The travel times were measured
using the first observation of the vehicle at each sensor
location, as described in more detail by Wasson and
Bullock (10).

In summary, midblock detector locations are prefer-
able because they will more accurately capture increases
in travel time due to queuing at intersections. However,
establishing permanent midblock locations is challen-
ging because power and communications is not usually
available. Intersection locations may be used when a
midblock sensor is infeasible. Intersection-located
sensors will capture delay accumulated at any intersec-
tions in between the endpoints of the route, but will not
capture delay occurring at the endpoints.

3.2 Sensor Antenna Height Impact on
Detection Efficiency

Another consideration in sensor installation that is
specific to Bluetooth MAC address matching technol-
ogy is the vertical position of the Bluetooth transceiver.
In a prior study (12), temporary sensors with different
transceiver antenna heights (0 ft, 2.5 ft, 5 ft, 7.5 ft, and
10 ft) were tested in the field to determine which height
would produce the largest sample size. The sensors were
stationed at various positions along the southbound
direction on I-65 along a segment with no intermediate
entrances or exits. The results of the study are shown in
Figure 3.4. This figure shows the total number of
detected vehicle IDs (MAC addresses) for each antenna
height, broken down by whether these vehicles were
known to be traveling northbound or southbound (by
matching the vehicle ID at another sensor), or whether
the direction was unknown (i.e., no match as found).
Notably, the sensor that lacked an antenna (i.e., the ‘‘0
ft’’ antenna) produced the least counts. The study
concluded that a height of ,7.5 ft was best for roadside
location because it detected a high number of vehicle
IDs, but the far side lanes were not substantially
underrepresented in the data.

In summary, when locating a vehicle sensor along
an arterial, it is preferable to use a midblock location
when possible, although an intersection location can
be used for permanent stations if there are no feasible
opportunities at any midblock station. Various
possibilities for sensor location are illustrated in
Figure 3.1. For Bluetooth MAC address matching, it
is recommended to install the Bluetooth transceiver in

Figure 3.2 Sensor locations in 2009 field study.
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Figure 3.3 Saturday (0900–1300) travel time cumulative distributions (9).

Figure 3.4 Traceable MAC address counts by antenna height and direction (12).
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an antenna, and an antenna height of ,7.5 ft is
recommended.

4. UNINTERRUPTED FLOW CASE STUDY

On facilities such as freeways where traffic flow is
unimpeded by intersections, travel time is a largely a
function of the traffic volume, incidents such as
accidents or inclement weather, and sometimes
geometry (e.g., curves that necessitate speed reduction).
In general, fluctuations in travel time related to the
daily ebb and flow of volume are recurring, and
geometry is of course rather permanent. It is important
to measure recurring congestion to be able to assess the
location and severity of bottlenecks, and make
decisions about potential improvements. In a day-to-
day operational context, it is also useful to understand
the impact of incidents. This chapter presents a detailed
case study5 investigating the use of AVI data to
measure the impact of winter weather on a 62-mile
freeway section.

4.1 Background

Performance measures for winter operations man-
agement during inclement weather has historically been
limited to quantifying the amount of effort expended,
such as the number of hours spent plowing or quantity
of deicing chemicals applied. All of these performance
measures are oriented toward the system input; their
impact on the actual outcome (system performance) is
based on the assumed effects of, for example, an hour of
plowing time or 10 tons of magnesium chloride. Actual
outcome assessment has typically been limited to
qualitative evaluation by the maintenance foreman. In
recent years, point speed detection at defined locations
has been used in a few trial assessments. However, this
data is typically unavailable in rural areas, while urban
areas rarely have sufficient sensor density to provide
consistent quantitative feedback for evaluating traffic
mobility along specific snow and ice maintenance
routes.

4.2 Data Collection

This case study demonstrates how AVI data can be
used to assess the impact of winter events on roadway
mobility over a segment. To collect AVI data to
quantitatively evaluate the feasibility using travel time
or space mean speed as a maintenance performance
measure, eight portable data collection devices were
used to record discoverable Bluetooth MAC Addresses
in Indiana along I-65 north of Indianapolis, between
mile marker (mm) 139 and mm 201. Figure 4.1 shows a
map of where the sensors were located along the

interstate, with approximately 10-mile spacing between
data collection devices. These stations nominally
corresponded to the boundaries of snow and ice
maintenance units. The devices were placed in the
median of the roadway, with the goal of sampling
northbound and southbound vehicles. Class 1 radios
with high-gain omni-directional antennas were used for
maximum detection of Bluetooth signals. Over 10
million MAC address readings were collected and
synthesized during the data collection period between
12/20/2010, and 5/12/2011.

4.3 Winter Weather Impacts

Segment travel times during the first substantive
storm event of 2011 are documented in Figure 4.2, with
Figure 4.2a and Figure 4.2b respectively showing
southbound and northbound travel times. The winter
weather even occurred on 1/11/2011 and 1/12/2011.
Travel times from 1/13/2011 are included to compare
with typical operations.

Figure 4.3 shows a visual record of the storm event.
From these we can develop a narrative of the storm.

N On 1/11/2011, there was substantial snow on the roadway

(Figure 4.3a) and one can see the impact on travel time in

Figure 4.2a, callout ‘i’’ and Figure 4.2b, callout ‘‘iv’’.

N On the following day, 1/12/2011, the roads are less snow

covered (Figure 4.3b). However, the travel time indicates

similar if not worse delay (Figure 4.2a, callout ‘‘ii’’;

Figure 4.2b, callout ‘‘v’’).

N On 1/13/2011, the roads are clear and dry (Figure 4.3c).
Around 10:20 (Figure 4.2a, callout ‘‘iii’’; Figure 4.2b,

callout ‘‘vi’’), the travel time reflects near free flow

conditions.

There are no spikes in delay on 1/13/2011, which
suggests that there are no episodes of recurring
congestion that might have caused the spikes on 1/11/
2011 or 1/12/2011. This example provides a good
generalization of the intuitive relationship with incle-
ment weather and its effects on traffic flow.

Travel time is dependent upon segment length. One
way of normalizing for segment length is to measure
segment performance in terms of space mean speed
(SMS) for each vehicle, as discussed in Chapter 2.

A more severe storm that affected the study region
occurred on 2/1/2011 and 2/2/2011. Figure 4.4 shows
the SMS for the entire 62-mile segment from mm 139 to
mm 201, along with corresponding data from a variety
of other sources. Within the time window represented in
these graphics, there was a sustained ice storm on 2/1/
2011 and 2/2/2011 that dramatically reduced the
number of vehicles on the road as well as their speeds.
Other less dramatic events occurred on 2/4/2011 and 2/
5/2011. Although Figure 4.4 provides good temporal
reference regarding when and how long a storm
occurred, it would be preferable to distill the massive
amounts of data represented in these plots into
summary statistics illustrating the impact of the storm
with time.

5This chapter is adapted from Hainen, A. M., S. M. Remias,
T. M. Brennan, C. M. Day, and D. M. Bullock. Probe Vehicle Data
for Characterizing Road Conditions Associated with Inclement
Weather to Improve Road Maintenance Decisions. Proceedings,
2012 IEEE Intelligent Vehicles Symposium, 2012, pp. 730–735.
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Figure 4.2 Scatter plot of AVI travel times.

Figure 4.1 Location of portable Bluetooth data collection points on I-65 in Indiana.
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Figure 4.5 shows the CFDs of northbound and
southbound SMS for several segments (see Figure 4.1).
The two CFDs in each plot are generated from two
specific time periods:

N The storm data was collected from 1800 on 2/1/2011
through 1200 on 2/2/2011.

N The clear weather data was collected one week later,
from 1800 on 2/7/2011 through 1200 on 2/8/2011.

The median speed during clear or free flow condi-
tions is approximately 65 mph, while the speed during
the storm is between 45 and 50 mph. The interquartile
range (IQR), or difference between the 75th and 25th

percentiles, shows the range of speeds of the middle

50% of the observations, and is an indicator of
variability. It is visually correlated with the overall
slope of the CFDs. In Figure 4.5, the ‘‘storm’’ CFD is
usually a bit more horizontal than the ‘‘clear’’ CFD,
indicating that there is a wider range of speeds during
storm conditions.

The changes in the CFDs of SMS are similar across
the eight segment-direction pairs in Figure 4.5. To
efficiently compare both the northbound and south-
bound directions, during the storm and during the clear
conditions, a plot of the median and IQR is presented
in Figure 4.6. This plot is useful in two capacities:

The median can be compared directly with other
segments, directions, or conditions to understand the
magnitude in the difference of speed.

The IQR gives a description of the variation of the
middle 50% of the sample. Figure 4.6 shows that SMS
decreases by approximately 20 mph during a storm,
and the IQR increases from about 8mph to about
12mph.

As mentioned before, the IQR is an indicator of the
variability of speed, which is highly relevant to
maintenance and operations. This information could
potentially be integrated with road maintenance poli-
cies to improve strategies.

A brief weather event on 2/5/2011 caused a disrup-
tion to travel time in both directions. Figure 4.7
statistically quantifies the impact of this event for the
northbound segment from mm 168 to mm 178. This
event was shorter in duration than the weather events
on 2/1/2011 and 2/5/2011, but the impact on both the
median speed and IQR are particularly clear during the
period between 800 and 1400.

The representation of the data in Figure 4.7 is
intellectually sound in terms of characterizing both
the central tendency and stochastic variation of the
segment speeds; it is also visually intuitive, and can be
used by maintenance personnel with a wide range of
academic backgrounds to systematically assess the
condition of the roads with more operational detail
than qualitative descriptions such as ‘‘snow covered’’ or
‘‘wheel tracks.’’

4.4 Data Fusion

AVI travel time data is even more powerful when
fused with additional data sets. Figure 4.8 arranges a
diverse collection of data sources in an organized
graphical view. The SMS from AVI travel times
(Figure 4.8a, Figure 4.8b) was combined with side-fire
radar spot speeds measured midway through the
corridor (Figure 4.8c), traffic counts obtained from
the same location (Figure 4.8d), hourly precipitation
(Figure 4.8e) componentized wind speed (Figure 4.8f),
and temperature/pressure (Figure 4.8g). The seven
charts share a common horizontal axis representing
time, with divisions representing 6 hour intervals.

It is interesting to compare the SMS obtained from
AVI data (Figure 4.8a, Figure 4.8b) with the point
speeds from a single location (Figure 4.8c). Figure 4.8c

Figure 4.3 Visual depiction for storm and clear conditions at
10:20 on each day.
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Figure 4.4 Space mean speed over entire study segment.
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shows an obvious decrease in point speed during the
storm of 2/1/2011–2/2/2011 that corresponds to a
similar drop in speed in the AVI data just above.
However, other decreases in speed that are observable in
the AVI data, such as in the northbound direction
(Figure 4.8a) around the middle of the day on 2/4/2011,
do not have corresponding decreases in point speed in
Figure 4.8c. This is not unexpected, because point speeds
only capture the performance at the exact location where
the measurement occurs. If traffic is slowed at a certain
location on the roadway, it cannot be observed in the
spot speeds measured from another location.

Figure 4.8 shows an intuitive relationship between
the SMS and additional integrated data including

weather conditions, point speed, and volume. The
impact of the storm that occurred in the late evening of
2/1/2011 and early morning of 2/2/2011 is clearly
defined by the following trends:

N SMS (Figure 4.8a, Figure 4.8b) and spot speeds
(Figure 4.8c) fall substantially during the storm, with
the degree and duration of the decrease varying by
direction.

N Traffic volume is quite low during and following the
storm (Figure 4.8d).

N An increase in precipitation is observed (Figure 4.8e),
mainly due to snow.

N The wind direction changes from primarily northeast to
southwest (Figure 4.8f).

Figure 4.5 Southbound cumulative frequency diagrams of space mean speed. Storm weather data is from 2/1/2011 1800 through
2/2/2011 1200 and clear weather data is from 2/7/2011 1800 through 2/8/2011 1200.
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Figure 4.6 Comparison between each segment for the corresponding storm and clear periods.

Figure 4.7 Southbound space mean speed from mm 168 to 178 on 2/5/2011.
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N A brief spike in temperature, and drop in the barometric

pressure can also be observed during the storm

(Figure 4.8g).

4.5 Conclusion

Historically, the only quantitative feedback on plow-
ing and deicing/salting operations has been the amount
of time that the drivers spent on the road, de-icing
chemical application rates, and other similar measures
that do not assess the outcomes in system performance.
AVI travel time data is an effective performance measure
on travel conditions and appears to hold substantial

value for public agencies to develop quantitative
mobility performance measures that can be integrated
into their winter operations decision support system to
provide both real-time and after action reviews of winter
operations management and strategies.

5. INTERRUPTED FLOW CASE STUDIES

Interpreting measured travel times on interrupted-
flow facilities, including signalized arterial corridors or
other surface street networks, is challenging because of
the presence of crossing movements, numerous entry
and exit points of traffic, and the potential complexity
of traffic control. This chapter provides an extended

Figure 4.8 Fused data capturing storm event from 2/1/2011 to 2/2/2011.
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discussion of traffic control parameters and their
impact on measured travel times, and presents several
case studies with field measured arterial travel times to
show real-world examples of the impact, as well as to
demonstrate how travel time data can be used to assess
user cost savings in signal retiming and to address the
feasibility of advanced control schemes.

5.1 Traffic Control Parameters

The following discussion in this chapter will rely on
the definitions of the following terms in conventional
signal control, which are illustrated in Figure 5.1:

N The cycle length is the amount of time in which the signal
controller is scheduled to serve all movements for which
there is demand. Sometimes, this is difficult to observe in
the field because of phase actuation. The time between
two successive ends of green, for example, will approx-
imate the cycle length.

N An intersection’s offset is the amount of time that one
controller’s ‘‘clock,’’ or mechanism that it uses to
determine where it is in the cycle, differs from a ‘‘system
clock’’. There are several alternative reference points that
can be used to define the ‘‘local zero’’ of a controller;
Figure 5.1 shows the end of the coordinated phase green.
The offset is an extremely important parameter to adjust
in coordinated operations because it controls when the
start of green occurs relative to neighboring intersections
(thereby defining the ‘‘green bands’’).

N The split of a phase is the portion of the cycle that is
assigned to that particular phase. During coordination, a
phase will be terminated if it runs out of split time (which
is called ‘‘forcing off’’), or, if gap detection is used, when
vehicles have cleared from the approach.

Two aspects of operation can be defined that
represent competing objectives of traffic control in a
series of intersections, such as in an arterial system:

1. Efficient capacity allocation at the local intersection. It is
most desirable to serve each vehicle as it arrives at an
intersection as quickly as possible.

2. Coordination between green intervals at sequential inter-
sections along a route. In general, and usually in arterial
operations, we want vehicles to progress along the major
routes in a system; that is, it is desirable to avoid forcing
them to stop numerous times along the route. This is done
by linking neighboring signals.

Although certain controller models and operating
modes replace the above concepts with terminology
other than cycle, offsets, and splits, these basic outcome
objectives are relevant to all signal control.

5.2 Management Problem

Figure 5.2 shows an overview of the signal control
design process and is used to place this document in the
context of the traffic signal design process. In Step I,
based on agency objectives, resources are invested in
retiming and other activities. In Step II, the necessary
data to carry out this action are assembled. Usually this
means the collection of manual turning movement
counts (although automatic collection of turning move-
ment counts is also possible). The data is typically used
to obtain a timing plan, through Steps III–IV, and an
iterative process (feedback loop 1) in which software
model results are used to fine-tune the plan before it is
field deployed. In Step V, the control parameters are
assigned to the field equipment. Most operators will do
some sort of performance measurement (Step VI),
varying in sophistication from limited field observation
of traffic to mitigate any obvious problems, to
automatic data collection and adaptive control. This
is represented as a second iterative process (feedback
loop 2) in which the control parameters are tuned,
based on observed performance.

Any analysis of travel time on a signalized facility
should consider the signal timing that is used on the
facility, because it directly influences the delay encoun-
tered at the intersections. In fact, signal timing decisions
often have a more substantial impact on travel time
than the traffic volume, particularly at moderate

Figure 5.1 Definition of cycle length, offset, and split.
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volume levels. In Chapter 1, an overview of the signal
control design process was presented (Figure 5.2); to
support that process, a variety of other operations and
maintenance activities are necessary. It is beyond the
scope of this document to delve into those procedures
in great detail, but one aspect that sheds some light on
the challenge of signal operations is in the management
of the controller databases that contain all of the
necessary information needed to establish intersection
control.

To provide an order of magnitude feel for the ‘‘design
space’’ when one discusses signal timing, let’s consider
the number of controller parameters that require
configuration on a corridor level. Figure 5.3 shows a
map of US 30, a 22-intersection corridor in north-
western Indiana. Intersections 1—5 are operated in
isolated ‘‘free’’ (non-coordinated) mode, while the rest
form a coordinated system. The controller data
contained in this system is represented in Figure 5.4.
Each of the 22 controllers has its own database, storing
72,000 programmable parameters (13). The entire
corridor contains 1.6 million parameters in total. By
comparing these against a default database, it is
possible to determine the number of parameters that
are typically changed when a controller is deployed in
the field. Figure 5.5 shows the results of this compar-
ison. From inspection of Figure 5.5, we see that
individual controllers required between 1400 and 2800
parameters to be programmed to be set up for field
operations, or between 30,000 and 60,000 for a 22-
intersection corridor.

While a ‘‘timing plan’’ as defined in modeling
software such as Synchro is fully described by a rather
short list of parameters (chiefly, cycle, offset, splits;
also, phase sequence, gap times, min green times, etc.),
there are many more parameters required to establish a
family of timing plans in the field. This includes day-of-
week and time-of-day schedules, detector configuration

(which can be especially time-consuming), communica-
tions configuration, preempts, and numerous other
controller options. Altogether this means that there are
thousands of opportunities for mistakes to be made in
each controller, some of which can have detrimental
consequences for operations.

Another illustration of the complexity of signal
operation is apparent if we consider the boundaries
between two different systems that share a link. This
situation is not uncommon in practice. Often, two
different agencies will have jurisdiction over different
parts of a roadway. This is especially typical when a
state-managed arterial intersects with a locally
managed road with its own signalized intersections
close by. Within one agency, sometimes two origin-
ally small systems grow into one, as land develop-
ment occurs along the corridor and new signals are
added.

Figure 5.6 shows a calendar view of two time of day
(TOD) plans for two adjacent signal systems that
operate on different, neighboring sections of US 30. In
System 1, Day Plan ‘‘A’’ uses 6 patterns in 9 TOD
intervals, while in System 2, Day Plan ‘‘B’’ uses 4
patterns in 6 intervals. The overlap between the two
TOD plans is shown in Figure 5.7. Because of the
changing patterns in the neighboring systems, the link
that is shared between the two systems will have 13
different traffic patterns throughout the day. It would
be particularly difficult to draw conclusions about
travel times measured along that particular link,
especially during a time period in which patterns
frequently change, such as around 1100–1400. This
illustrates that it is important to be cognizant of system
boundaries when establishing travel time data collec-
tion zones.

Figure 5.2 An overview of the traffic signal control design process, showing two iterative feedback loops.

Figure 5.3 Location of intersections on US 30 (13).

Figure 5.4 Controller database structure for US 30 (13).
With 72,000 parameters existing per controller, this corridor
encompasses approximately 1.6 million parameters in total.
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5.3 High Resolution Controller Event Data

One set of data that has emerged as a rich source of
information on signal operations is the high-resolu-
tion time-stamped record of controller events. In

recent years, several controller manufacturers have
begun to develop internal logging utilities for writing
this type of data, making it available for analysis. A
variety of performance measures have been developed
from this data covering a variety of use cases (9,14–
21).

These events include:

N Detector on/off times, allowing occupancy and pulse

counts to be recorded.

N Phase state changes (green, yellow, red clearance, and

‘‘off’’).

N Coordinator events, including entry and exit from

transition, yield points, and controller local zero times.

N Preemption events, including entry and exit from

preempt state.

Table 5.1 provides an example stream of controller
data, showing a typical chain of controller events as
they are logged in real time. The majority of these
events are detector on/off events, with occasional phase
events occurring. By pulling this data into a relational
database and querying on selected events (22), it is
possible to extract a variety of performance measures.

Figure 5.8 shows an overview of an arterial manage-
ment strategy incorporating these data sets, correspond-
ing to feedback loop 2 in Figure 5.2. After optimizing
the signal control parameters, data collection activities

Figure 5.6 Timeline showing the schedules of two signal programs used on the same day for two adjacent subsystems on US 30.

Figure 5.5 Analysis of controller database parameters for 22
intersections: Count of parameters by intersection that were
changed from the default controller database (13).
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based on various data sets would be regularly or
continually monitored to detect operational deficiencies.
When a deficiency is found, this would trigger tuning or
retiming or activities.

With regards to arterial operations, we are most
interested in the quality of progression along a corridor.
While delay and travel time directly measure the
outcomes of signal control, they do not by themselves
give very detailed information about whether vehicle
progression was satisfactory. However, by comparing
vehicle arrival times with the status of the coordinated
phase green, it is possible to determine whether vehicles
arrive on green or arrive on red. The higher the
proportion of vehicles arriving on green, the better the
quality of progression.

One way to visually represent progression data
(vehicle arrivals relative to the green state) is to
construct a ‘‘cyclic flow profile.’’ Figure 5.9a shows an
example of such a profile. The horizontal axis
represents the portion of the cycle length, and the two
distributions show the number of vehicles crossing the
advance detector during that portion of the cycle
(adjusted for travel time to the intersection), and the
probability that the coordinated phase is green at that
time in the cycle. Ideally, we would endeavor to

schedule vehicles to arrive in the portion of the cycle
when the probability of green is highest. A number of
cycles of data are needed to develop a flow profile.

While the flow profile is useful for showing the
quality of progression in an aggregated manner, it is
often helpful to examine what happens on a cycle-by-
cycle basis, to determine whether the patterns are
consistent across a time period. Recently, a visualiza-
tion tool called the ‘‘Purdue Coordination Diagram’’
(PCD) was developed that allows all the individual
coordination events to be viewed in a disaggregate
manner (9,16,17,23). Figure 5.9b shows a PCD for 1
hour of coordination data. All of the events in the plot
are positioned according to the time of day in which
they occur (x-axis) and the time in cycle (or more
specifically, the time after the last end of green, y-axis).
The green and red lines respectively show the beginning
and end of green during each cycle, and each point
represents a vehicle crossing the advance detector (as
before, adjusted for travel time to the intersection).
Platoons of vehicles can be visually identified by strings
of detections, as shown in Figure 5.9b.

The PCD also offers the advantage of enabling 24
hours of signal operations to be viewed in one graphic.
Figure 5.10 pairs a PCD (Figure 5.10b) with the cycle-
by-cycle percent on green (Figure 5.10a) directly
corresponding to each cycle in the PCD. Several
observations can be made from this figure:

N During the overnight ‘‘free’’ or fully actuated, non-
coordinated operations, the intersection tends to dwell in
the coordinated green for long periods of time
(Figure 5.10b, callout ‘‘i’’).

N During most of the coordinated portion of the day
(0600–2400), platoons of vehicles appear to arrive mostly
during green (e.g., Figure 5.10b, callout ‘‘ii’’), although
there are some times of day when some platoons are cut
off by the end of green, spilling into the next cycle (e.g.,
Figure 5.10b, callout ‘‘iii’’). These times of day corre-
spond to reductions in the percent on green in
Figure 5.10a.

N Toward the end of the day, reduced minor phase
extension causes the controller to return to the coordi-
nated phase early more often (Figure 5.10b, callout
‘‘iv’’), while platoons become thinner (Figure 5.10b,
callout ‘‘v’’). The underutilized green bands suggest that
a shorter cycle length might better serve this time
period.

Figure 5.11a shows the percent on green, and
Figure 5.11b shows a PCD for a signal on one of the
links on the boundaries of the two subsystems described
in Figure 5.7, where either local or upstream intersec-
tion patterns change 13 times during the day. These are
reflected in the strongly varying percent on green and
vehicle arrival patterns. The vertical lines show when a
pattern changes on one of the two systems.

5.4 Case Study: Synthesis of Controller Event Data and
Travel Time Data

Now let us consider these high resolution event-
based arrival distributions relative to concurrent travel

Figure 5.7 Timeline showing the schedules of two signal
programs used on the same day for two adjacent subsystems
on US 30.
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time measurements. Figure 5.12 shows a map of three
intersections along a section of US 30. In February
2009, travel time measurements were carried out across
this 3-intersection section by deploying two Bluetooth
cases as shown in the map (‘‘BT Case’’). The resulting
eastbound and westbound travel times are respectively
shown by Figure 5.13a and Figure 5.13b. The travel
time distributions in both directions show strong
bimodal characteristics, similar to what we observed
earlier in simulation for platoons being cut off by the
end of green.

N In the eastbound direction, there are two distinct

groups of vehicles; we can speculate that one group

represents those who were able to progress through the

three intersections without stopping (Figure 5.13a,

callout ‘‘i’’) and the other group represents vehicles

experiencing perhaps one stop (Figure 5.13a, callout

‘‘ii’’).

N In the westbound direction, similar patterns are visible.

Again, it is likely that the lower group (Figure 5.13b,

callout ‘‘iii’’) represent vehicles that are not stopped, and

they have approximately the same travel time as the

corresponding vehicles in h other direction. The other

TABLE 5.1
Example high-resolution controller event data (16).

Timestamp Event Code ID Parameter Explanation

04/08/09 14:10:49.6 8 22 Detector 22 off

04/08/09 14:10:49.9 9 7 Detector 7 on

04/08/09 14:10:50.1 8 7 Detector 7 off

04/08/09 14:10:51.1 63 2 Phase 2 yield point

04/08/09 14:10:51.3 2 2 Phase 2 yellow state

04/08/09 14:10:51.3 33 2 Phase 2 termination: gap out

04/08/09 14:10:51.8 9 10 Detector 10 on

04/08/09 14:10:51.9 9 28 Detector 28 on

04/08/09 14:10:52.0 8 10 Detector 10 off

04/08/09 14:10:52.0 9 12 Detector 12 on

04/08/09 14:10:52.0 8 28 Detector 28 off

04/08/09 14:10:52.1 8 12 Detector 12 off

04/08/09 14:10:52.4 9 17 Detector 17 on

04/08/09 14:10:52.8 9 19 Detector 19 on

04/08/09 14:10:53.0 8 19 Detector 19 off

04/08/09 14:10:56.1 9 21 Detector 21 on

04/08/09 14:10:56.4 3 2 Phase 2 red clearance state

04/08/09 14:10:57.0 9 1 Detector 1 on

04/08/09 14:10:57.2 9 3 Detector 3 on

04/08/09 14:10:57.3 8 1 Detector 1 off

04/08/09 14:10:57.4 1 1 Phase 1 green state

04/08/09 14:10:57.4 0 2 Phase 2 off state

04/08/09 14:10:57.4 8 3 Detector 3 off

04/08/09 14:10:57.8 9 10 Detector 10 on

04/08/09 14:10:58.0 8 10 Detector 10 off

04/08/09 14:10:58.0 9 12 Detector 12 on

04/08/09 14:10:58.1 8 12 Detector 12 off

04/08/09 14:10:58.5 9 4 Detector 4 on

04/08/09 14:10:58.6 8 4 Detector 4 off

04/08/09 14:10:58.6 32 6 Phase 6 min green complete

Figure 5.8 Fusion data approach to signalized arterial analysis.

31



group (Figure 5.13b, callout ‘‘iv’’) probably represents
vehicles that stopped at least once.

To see whether these travel time observations
correlate well with the arrival patterns, we can examine
the PCDs at each of the three intersections in some
detail. Figure 5.14 contains six PCDs that correspond
to the three eastbound and three westbound approaches
on this section of US 30.

N In the eastbound direction at Int. 1 (Figure 5.14a),

many of the coordinated vehicles arrive during green,
but a substantial number of these platoons are cut off

by the end of green (as shown by the heavy clustering of
vehicles at the bottom of the PCD), and must wait until

the next green to move forward. The coordinated

platoons at Int. 2 (Figure 5.14c) and Int. 3
(Figure 5.14e) arrive almost entirely within the begin-

ning and end of green.

N Westbound vehicles are similarly unimpeded at Int. 3
(Figure 5.14f) and Int. 2 (Figure 5.14d), judging by the

arrival patterns that show most of the coordinated

platoons arriving between the start and end of green.
Many of these vehicles are also cut off at Int. 1
(Figure 5.14b), similar to the eastbound traffic.

In this case, the travel time patterns in Figure 5.13
are easily explained in terms of the arrival patterns in
Figure 5.14, similar to the examples shown in Chapter
2. In general, when travel times are expanded over
longer corridors including more intersections, regular
patterns can become less distinct depending on how
many times platoons of vehicles moving along the path
of interest encounter red signals.

In this chapter, we provided a look at challenges in
arterial operations from the perspective of data
management and system boundaries, and introduced
a way to examine the quality of progression along the
arterial by using PCDs derived from high-resolution
controller event data. An example of how travel time
relates to vehicle progression was presented in which
travel time measurements from the field were compared
to concurrent signal event data. This example was very

Figure 5.9 Explanation of the Purdue Coordination Diagram (northbound at SR 37 and 141st St., 1/18/2012, 0700–0800).
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similar to earlier observations from simulation where
bimodal travel time distributions were observed when
the stream of coordinated vehicles was cut off early by
the end of green.

5.5 Case Study: Alternatives for Assessing Arterial
Travel Times

In this case study,6 we examine the use of AVI travel
times in assessing arterial performance from a variety of
sensor location perspectives.

While agencies will often want to use corridor travel
time as a system metric, especially in the cases of a
coordinated system, identifying the relative delay at each
signal is also important. SR 37 south of Indianapolis
(Figure 5.15) is a 10-mile commuter corridor linking
Indianapolis, Indiana and Bloomington, Indiana. This
map indicates the locations of sensor locations (labeled
as Bluetooth Monitoring Station, or ‘‘BMS’’) along the

roadway as well as three alternative methods of
matching travel times between pairs of sensors to
characterize travel time. It is important to note that the
same data set from any given BMS is used for all three
methods, but each method tells a different story.

5.5.1 Origin-Based Travel Time

The first data reduction technique is called ‘‘origin-
based travel time’’ (Figure 5.15a, Figure 5.16a). In this
method, we consider all of the travel times between the
starting point and each of the sensing locations to the
south in a sequence of BMS pairs. During the PM peak
period from 1600–1900, commuters from Indianapolis
leave the city and the SB traffic is quite heavy (AADT
exceeds 30,000 vehicles per day). The northern most
BMS labeled ‘‘BMS-1’’ in Figure 3a is where each
origin-based travel time segment originates. A family of
sequentially larger travel time segments is formed with
BMS-1 to BMS-2, BMS-1 to BMS-3, BMS-1 to BMS-4,
and so on.

Rather than assuming a normal distribution and
calculating an average and standard deviation, the
distribution for each travel time segment is plotted in a
cumulative distribution of the field-collected sample as
shown in Figure 5.16a. In a more traditional study,
typically only the average travel time for the entire

6The material in this section is adapted from Remias, S. M., A. M.
Hainen, C. M. Day, T. M. Brennan, H. Li, E. Rivera-Hernandez,
J. R. Sturdevant, S. E. Young, and D. M. Bullock. Characterizing
Performance of Arterial Traffic Flow Using Probe Vehicle Data.
Submitted to Transportation Research Record, Journal of the
Transportation Research Board, Paper No. 13-1812, Transpor-
tation Research Board of the National Academies, Washington,
D.C., 2012.

Figure 5.10 Example of correlation between percent on green and arrival patterns that can be observed in the coordination
diagram (northbound at SR 37 and 141st St., 1/18/2012).
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corridor (i.e., from BMS-1 to BMS-8) would be
considered. The distributions in Figure 5.16a capture
some interesting details that are not visible when only
endpoint-to-endpoint travel times are compared. For
example, if we scan across the figure from left to right
we see that the slope of the CFDs gradually decreases.
As the comparison segments grow larger, the amount of
variability tends to naturally increase, as variation in
driver speeds translate into greater variation in travel
time as more distance is accumulated.

5.5.2 Destination-Based Travel Time

The next data reduction technique is called ‘‘destina-
tion based travel time’’ (Figure 5.15b, Figure 5.16b).
Similar to origin-based travel time, a sequence of BMS
pairs is considered, only in this case they share a
common exit point rather than a common entry. While
some cars exit the arterial north of BMS-8, and others

Figure 5.11 Influence of frequent pattern changes on interface between two systems under the same cycle length (eastbound at
US 30 and Austin Rd., 2/9/2012).

Figure 5.12 AVI travel time data collection on US 30.
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Figure 5.13 Travel times on US 30 between US 55 and Grant (2/9/2012).
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Figure 5.14 Analysis of progression at Int. 1 (US 30 and SR 55), 2/9/2012.
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Figure 5.15 Bluetooth monitoring stations and subsection segment regimes on SR 37 south.
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Figure 5.16 Southbound SR 37 travel time analysis during the PM peak period.
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enter the system south of BMS-1, it is still important to
examine how the southern portion of the corridor
operates. The curves of the destination-based cumula-
tive frequencies shown in Figure 5.16b appear similar
to the origin-based travel time cumulative frequencies
curves shown in Figure 5.16a. However, as discussed in
the following section, a slight anomaly is discernible
between BMS-5 to BMS-8 and BMS-4 to BMS-8.

5.5.3 Individual Intersection Approach Delay Segmentation

The third data reduction technique is called ‘‘indivi-
dual intersection approach delay segmentation’’
(Figure 5.15c, Figure 5.16c). This method examines
the southbound traffic on individual links within the
corridor. This creates a series of links including BMS-1
to BMS-2, BMS-2 to BMS-3, BMS-3 to BMS-4, and so
forth. Since the length of each link varies, control delay
will be estimated. Control delay is here defined as the
travel time, less the time required to proceed through
the segment at the free flow speed. The 5th percentile of
measured travel times was used as the free flow speed;
vehicles traveling more rapidly than this percentile were

excluded from the analysis. Figure 5.16c shows the
CFDs of delay for each sample.

The curve labeled ‘‘i’’ for BMS-1 to BMS-2 (which
corresponds to the curve as shown in Figure 5.16a,
shifted leftward by the 5th percentile travel time) and
the curve labeled ‘‘ii’’ for BMS-4 to BMS-5 both appear
to warrant further examination. The segment between
BMS-1 and BMS-2 is near the exit ramp of I-465, and is
influenced by random arrivals of traffic with high
volume and turning movements. Curve ‘‘ii’’ is much
more interesting; this curve represents a segment (BMS-
4 to BMS-5) in the middle of the corridor. Recall that in
the destination-based regime (Figure 5.16b), the dis-
continuity in the slope between the 25th and 75th

percentiles was an anomaly that was hard to distin-
guish; it is quite apparent in terms of control delay
(Figure 5.16c). This indicates a bimodal distribution,
which results from traffic interaction with the only
signal in that part of the corridor (the intersection of SR
37 and Southport Rd, Figure 5.15). While travel time
may not be able to explicitly identify the cause of the
anomaly, the characteristics of this curve suggest there
is an offset that could be improved.

5.6 Case Study: Deriving User Benefit from Travel Times

In this chapter, we present results from a case study
(25) in which field measurements of travel time were
used to assess signal retiming activities on an eight-
intersection corridor. Combining the reduction in
corridor travel time with the traffic volumes enables
us to compute an annual user benefit of $500,000
resulting from signal retiming.

Figure 5.17 shows a map of the test corridor, which
is SR 37 in Noblesville, Indiana. The southern group of
four intersections (5–8) are the same as those presented
in the previous chapter. Between May and July of 2010,
several different signal timing optimization strategies
were tested on this network, with travel time measure-
ments collected from the Bluetooth cases as indicated
on the map in Figure 5.17.

The four optimization objectives tested in this study
were as follows (25):

I. Minimize delay. The arrival and expected departure
data contained in a flow profile (Figure 5.9a) was used
to estimate the delay incurred for given arrival patterns
relative to the probability of green. The signal offsets
were adjusted to minimize the total delay for the
system.

II. Minimize delay and the number of stops. Rather than
only delay, a composite objective function using delay,
plus the number stops multiplied by 20 seconds of
delay per stop, was minimized.

III. Maximize the number of arrivals on green. This
objective sought to maximize the number of arrivals
in the green band. Rather than estimating delay or
stops, the arrival data was directly used to locate the
greatest portion of the arrival distributions where the
probability of green was greatest.

IV. Maximize the number of arrivals on green, excluding the
first 10 seconds of green. The mechanism for achieving

Figure 5.17 Map of the SR 37 corridor (25).
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objective was identical to III, except that the first 10

seconds of green were not considered part of the

green distribution for the purpose of optimization.

The idea in this case was to allow some time for

queued vehicles to clear before the arrival of co-

ordinated vehicles.

After computing four sets of optimal offsets, four
new timing plans were deployed in the field on four

successive Saturdays between June and July 2010.
Travel time measurements were obtained for each of
these Saturdays using the sensor locations in
Figure 5.17. The resulting CFDs for southbound and
northbound vehicles across the three paths in the
system are shown in Figure 5.18. The baseline travel
time CFD and the four optimized travel time CFDs are
labeled by callouts.

Figure 5.18 Cumulative frequency diagrams of anonymous AVI travel times for alternative objective functions, Saturday, 1500–
1800 (25).
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N Figure 5.18a and Figure 5.18b respectively show CFDs

of southbound and northbound travel times through all

eight intersections. Most of the optimized offsets led to

overall improvements in travel time along the corridor of

approximately 1–1.5 minutes in the southbound and 1

minute in the northbound.

N Figure 5.18c and Figure 5.18d show CFDs of travel time

through the four intersections on the northern subsystem

(Ints. 1–4). There was little change in southbound travel

times on this subsystem, and slight improvements for

northbound travel times. Although the median north-

bound travel time improved by only a slight amount, the

upper portion of the curves shifted to the left, indicating

a reduction in stops somewhere within the system.

N Figure 5.18e and Figure 5.18f show CFDs of travel time

through the four intersections on the southern subsystem

(Ints. 5–8). Substantial improvements in travel time were

achieved in both directions, for all of the tested objective

functions.

The changes in the median travel times are
summarized in Table 5.2, while changes in the median
compared to the baseline travel time are shown in
Table 5.3. These tables show the changes in travel
times broken down into 3-hour analysis periods,
which shows some interesting trends by time of day.

The largest reductions occurred during the 1500–1800
time period.

The changes in median travel times are useful for
reporting improvement in system performance, but it is
much more compelling, particularly when justifying the
investment in retiming activities, to convert these
savings into dollar amounts. To do so, we adopted
the methodology of the 2009 Transportation Urban
Mobility Report (26) to convert travel time changes
into estimated user benefit and environmental savings.

The change in travel times (Table 5.3) are first
computed by section :

DTT~TTBase(section){TTObjective(section) ð3Þ

where TTBase(section) is the arterial travel time
(minutes) for System 1 or System 2 (Figure 5.17) and
direction (northbound or southbound) measured dur-
ing the baseline conditions, and TTObjective(section) is the
travel time for each section, measured when new offsets
were deployed that had been optimized according to the
given objective.

The user costs for commercial vehicles (USERt) are
given by

TABLE 5.2
Median travel times.

Southbound Travel Time (min) Northbound Travel Time (min)

System Time Base I II III IV Base I II III IV

1 6–9 3.70 3.60 3.70 3.90 3.70 3.80 4.00 3.90 3.75 3.80

9–12 4.40 4.00 4.30 4.00 4.20 5.20 4.95 5.10 4.25 5.05

12–15 4.90 5.30 4.40 4.70 4.40 5.50 6.20 5.60 5.55 5.60

15–19 4.35 3.90 4.20 4.10 4.20 5.60 4.95 4.85 4.80 5.20

19–21 4.30 4.00 3.95 3.80 4.00 4.50 4.55 4.10 4.00 4.50

2 6–9 3.60 3.60 3.90 3.60 3.50 4.70 3.50 3.50 3.45 3.45

9–12 4.40 3.60 3.70 3.80 3.80 4.70 3.60 3.40 3.50 3.40

12–15 4.50 3.90 3.90 3.55 4.10 4.60 3.50 3.40 3.40 3.40

15–19 5.20 3.80 3.90 3.90 3.85 4.45 3.50 3.40 3.40 3.30

19–21 4.35 3.60 4.00 3.70 3.80 4.50 3.40 3.30 3.30 3.20

TABLE 5.3
Reductions in median travel time compared to baseline.*

Southbound Travel Time (min) Northbound Travel Time (min)

System Time I II III IV I II III IV

1 6–9 0.10 0.00 20.20 0.00 20.20 20.10 0.05 0.00

9–12 0.40 0.10 0.40 0.20 0.25 0.10 0.95 0.15

12–15 20.40 0.50 0.20 0.50 20.70 20.10 20.05 20.10

15–19 0.45 0.15 0.25 0.15 0.65 0.75 0.80 0.40

19–21 0.30 0.35 0.50 0.30 20.05 0.40 0.50 0.00

2 6–9 0.00 20.30 0.00 0.10 1.20 1.20 1.25 1.25

9–12 0.80 0.70 0.60 0.60 1.10 1.30 1.20 1.30

12–15 0.60 0.60 0.95 0.40 1.10 1.20 1.20 1.20

15–19 1.40 1.30 1.30 1.35 0.95 1.05 1.05 1.15

19–21 0.75 0.35 0.65 0.55 1.10 1.20 1.20 1.30

*Negative numbers represent increases in travel time.
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USERt~

DTT � Vol �%T � PPVt �
$102:12

hr
� 1hr

60 min

ð4Þ

where Vol is the volume (number of vehicles) during
the analysis period, %T is the percentage of commercial
vehicles (‘‘trucks’’, estimated at 2% for Saturdays), and
PPVt is the number of passengers per vehicle (1). The
$102.12 amount used for the time value of money for
commercial vehicles is taken from the 2009
Transportation Urban Mobility Report (26). Where
DTT is positive, the outcomes of the equation are
savings.

User costs for passenger cars (USERc) are given by

USERc~

DTT � Vol �%C � PPVc �
$15:47

hr
� 1hr

60 min

ð5Þ

where %C is the assumed percentage of passenger
vehicles (estimated at 98% for Saturdays), PPVc is
assumed to be 1.2, and a lower time value of money at
$15.47 per hour (26) is applied.

Reductions in fuel consumption and CO2 emissions
are derived as follows:

FUEL~DTT � Vol � 0:87gal

hr
� 1hr

60 min
ð6Þ

In Equation 6, FUEL is the change in the amount of
fuel consumed (gallons), which is a reduction when

DTT is positive. Using conversion factors from
Argonne National Laboratory, a passenger car that
idles at 1,000 rpm, while using air conditioning 50% of
the time, consumes 0.87 gallons of gasoline per hour, or
0.0145 gallons per minute (26). The corresponding
reductions in CO2 emissions are calculated from the
following two equations:

CO2~FUEL � 19:4lbs

gal
� 1ton

2000lbs
ð7Þ

CC~CO2 �
$22

ton
ð8Þ

Here, CC represents the ‘‘CO2 cost.’’ According to
the EPA, the amount of CO2 emitted when a gallon of
gasoline burns is approximately 19.4 lbs/gallon (27).
The monetary equivalent of the CO2 is assumed to be
approximately $22/ton of CO2 produced (28).

Table 5.4 shows the final tabulation of the overall
user and environmental benefits, converted into dollars,
based on the analysis described above. The total savings
were tabulated by section and by time period, which
were then summed. The number of vehicle minutes
saved, for example, were calculated by multiplying the
reduction in median travel time (Table 5.3) by the
expected volumes (computed as an average across all
five days in the sampled dates), for each time period,
then summing across time periods to get the benefit for
all of Saturday. Table 5.4 also shows these numbers
when they are multiplied by 52, to produce an annual

TABLE 5.4
Summary of cost savings for alternative optimization objectives, by section.

Objective

Daily

Multi-

plier

Annual

Total Time

Saved

(veh-min)

CO2 Emission

Reduction (tons) CO2 Savings User Benefits

CO2 Emission

Reduction (tons) CO2 Savings User Benefits

(a) System 1, Northern Section

I Min Delay 5032 0.71 $16 $1,697 52 37 $810 $88,233

II Min Delay &

Stops

3813 0.54 $12 $1,286 52 28 $614 $66,864

III Max Ng 1760 0.25 $5 $593 52 13 $283 $30,855

IV Alt. Max Ng 7883 1.11 $24 $2,658 52 58 $1,268 $138,229

(b) System 2, Southern Section

I Min Delay 24386 3.43 $75 $8,223 52 178 $3,924 $427,614

II Min Delay &

Stops

25327 3.56 $78 $8,541 52 185 $4,075 $444,111

III Max Ng 25147 3.54 $78 $8,480 52 184 $4,046 $440,962

IV Alt. Max Ng 26338 3.70 $81 $8,882 52 193 $4,238 $461,845

(c) System 1 and System 2, Arterial

I Min Delay 29418 4.14 $91 $9,920 52 215 $4,733 $515,847

II Min Delay &

Stops

29140 4.10 $90 $9,826 52 213 $4,689 $510,976

III Max Ng 26907 3.78 $83 $9,073 52 197 $4,329 $471,817

IV Alt. Max Ng 34221 4.81 $106 $11,540 52 250 $5,506 $600,073

42



benefit. These results show that user cost reductions
ranging from $470,000 to $600,000 can be realized,
varying by objective.

6. ORIGIN-DESTINATION MATRIX ESTIMATION

Origin destination information and quantitative
performance of critical routes is often challenging to
acquire for special events or other non-recurring
activities. This chapter7 examines the feasibility of
utilizing anonymous high-resolution automatic vehicle
identification (AVI) travel time data to assess route
distribution during a nighttime football game attended
by approximately 65,000 fans. Twelve monitoring
stations were used to collect anonymous MAC
addresses from Bluetooth-enabled devices. That data
was subsequently processed to provide quantitative
data documenting:

N Inbound route choice

N Outbound route choice

N Location and magnitude of inbound and outbound
congestion.

Unlike many other special event data collection
efforts that either require intensive manual labor or
extensive permanent surveillance technology, the
Bluetooth AVI travel time data procedures described
in this paper employs low-cost, battery power data
collection devices that can be cost-effectively deployed
for virtually any special event drawing a substantial
crowd.

6.1 Study Background

Special events often have substantial impacts on a
local or a regional area. Examples of estimated
economic impacts of major special events are shown
in Table 6.1. Several resources exist to assist agencies
with dealing with special events, such as the FHWA
Special Events Handbook (29). Agencies often cooperate
and counsel each other for exceptional events planned
well ahead of time. With each special event that takes
place, there is an opportunity to deploy data collection
to build a library of quantitative data to assess the
effectiveness of special event operations. These after-
action reviews can then help support future event
planning and facilitate peer exchange.

The case study in this chapter is based on a Purdue-
Notre Dame football game that was played at the
Purdue campus in West Lafayette, Indiana on
Saturday, 10/1/2011. This game had an attendance of
61,555 fans, which is approximately 150% of the
attendance of most home games, likely because
Purdue University and Notre Dame are both large
universities in Indiana with popular football programs.

The travel demand generated by events such as this
significantly loads the road network in the cities of
Lafayette and West Lafayette, Indiana, well above
normal levels. This case study demonstrates how AVI
data can be used to characterize route choice
preferences and changes in travel time during special
events.

To collect data, twelve Bluetooth Monitoring
Stations (BMS) were deployed along the major routes
to and from Ross-Ade Stadium in West Lafayette,
Indiana. The BMS were deployed on 9/22/2011 in the
locations shown Figure 6.1. The setup was designed to
monitor incoming and outgoing traffic along the major
ingress/egress corridors: US 52, US 231, SR 43, SR 26,
and SR 38 as well as the local traffic along West
Lafayette city roads near the stadium, as shown in
Figure 6.2. Figure 6.3 provides a pictorial review of
sensor locations. As demonstrated in these photos,
these temporary installations consisted of equipment
cases securely attached to local signs and utility poles.
Additional sensors were located along SR 25 and SR 38
near I-65, but these sensors failed during the data
location.

6.2 Accommodating Routes with Missing Data

Table 6.2 shows the number of samples from point
to point in the sensor network. While this can be useful
for data validation, macro-scale route choice is more
valuable. Because the sensors located on SR 26 and SR
38 failed, some imputation was required to estimate
these volumes. Figure 6.4 illustrates this concept for SR
38. Figure 6.4a presents a map of the physical
configuration of sensors and roadways of interest,
while Figure 6.4b shows a conceptual map. Callout ‘‘i’’
indicates the composite origin zone used as the origin of
traffic. Matched volumes recorded by BMS at STA05,
STA09, and STA10, and on routes between STA05-
STA10 and STA05-STA09 are shown in Figure 6.4b.

7This chapter is adapted from Hainen, A. M., E. M. Rivera-
Hernandez, S. R. Mitkey, S. M. Remias, and D. M. Bullock. Use
of Bluetooth Technology to Estimate Travel Time and Route Choice
for Special Events. White paper for SBIR DTR57-8-SBIR2.

TABLE 6.1
Sample economic impact from popular special events (29).

Event

Annualized Economic Impact

(million USD)

Summer Olympics 700

NAIAS* 580

Daytona 500* 554

Super Bowl XXXVII 367

Indianapolis 500* 337

New York International Auto

Show*

187

Ryder Cup 114

Oscars* 63

Kentucky Derby* 53

Major League Baseball All-Star

Game

53

World Series 40

*Estimated annual economic impact.
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Figure 6.1 Equipment layout and numbering regime.

Figure 6.2 Schematic layout of network noting sensor locations.
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Figure 6.3 Bluetooth monitoring station installations.
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289 matches were observed between the origin zone and
STA05. Additionally, 175 matches and 37 matches were
also respectively observed between that location and
STA09 and STA10. If it is assumed that all 289 matches
between the origin zone and STA05 are vehicles leaving
the region, then the volume of traffic leaving on SR 38
can be estimated from 289 – 175 – 37 5 77. A few notes
on this imputation are in order:

The 289 vehicles matched between the origin and
STA05 are not the same exact vehicles as the 175
measured between STA05 and STA10, or the 32
measured between STA05 and STA09. Assuming that
match rates are roughly equal for all routes spanning
any two sensors in the network, the volume of matches
is expected to be proportional to the traffic volumes
between those locations.

Matching directly between the origin zone to STA09
or STA10 finds higher sample rates; this suggests that
some traffic may be using a route other than through
STA05 to reach these destinations (for example, the
local bridge just north of STA05 in Figure 6.4a).
Therefore, the conceptual network may not include all
available routes. This means there may be additional
traffic heading to SR 38 that used alternate routes; This
could lead to underassignment of traffic using SR 38.

It is possible that some of the imputed volume for SR
38 was local traffic, which could lead to overassignment
of traffic.

Although the imputation method may introduce
some variances in the O-D volumes, this technique
shows that missing data can be reasonably estimated
from other detector data. These contingencies should
be taken into consideration when planning sensor
locations. Importantly, there is some value to having
intermediate sensors in the system, rather than having
only sensors near the origin and at cordon points.

6.3 Origin-Destination Volume Observations

Figure 6.5 and Figure 6.6 respectively document the
proportion of matched vehicles on the inbound and

TABLE 6.2.
Origin-destination matrix on 10/1/2011 between 1200 and 2359.

Destination Station

STA 01 02 03 04 05 06 07 08 09 10 11 12

O
ri

g
in

S
ta

ti
o
n

01 225 135 63 47 190 5 14 5 14 13 30

02 89 305 92 42 76 11 11 1 5 13 27

03 49 199 237 109 23 16 17 6 17 14 17

04 75 79 263 360 16 18 46 14 69 26 1

05 90 50 152 455 55 17 35 18 135 47 1

06 362 123 72 28 47 11 12 8 41 23 11

07 6 21 25 29 23 11 3 2 4 1 5

08 14 4 29 72 72 14 1 18 5 41 1

09 6 1 11 20 27 9 0 26 26 0 0

10 23 15 33 82 186 44 4 6 9 22 0

11 56 27 40 78 62 63 1 42 0 23 1

12 46 34 30 5 0 10 5 0 0 0 1

Figure 6.4 Interpolation of utilization for unobserved route.
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outbound routes. Because the visiting team (Notre
Dame) is located in northern Indiana, it is not
surprising that approximately 50% of the inbound
traffic came from SR 25 and SR 43. Interestingly,
these routes accounted for a smaller percentage of
the outbound traffic, perhaps because many of the

attendants stayed in local hotels after the late night
game or continued their travel toward Indianapolis.

With regards to the routes leading east and south,
there were modest differences in route choice between
inbound and outbound, with the most substantial
change along SR 26. This may be attributable to the

Figure 6.5 Inbound route utilization.

Figure 6.6 Outbound route utilization.
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land use on SR 26, which is often congested during
typical daytime hours, so motorists may have actively
avoided it while traveling in bound. When the game
ended (around midnight), departing fans appeared to
make heavier use of SR 26, perhaps anticipating that it
would not be congested at that time of day.

The routes leading to the west of campus (US 231N
and SR 26 West) has almost perfectly balanced propor-
tion of traffic between inbound and outbound. These
routes serve rural areas to the west of campus; they are the
only feasible routes for many locations in that direction.

6.4 Critical Links

Figure 6.5 and Figure 6.6 have four callouts marking
four routes (Route 1, Route 2, Route 3, and Route 4)

that tend to experience congestion during certain
periods of the pre and postgame events.

Figure 6.7a and Figure 6.8a show the two week
travel time characteristics for Route 1. Figure 6.7b
suggests there is perhaps some short term congestion
just before noon when the parking lots open and
approximately 7–8 minutes of delay along this corridor
in the late afternoon around 1700. However, the more
substantial congestion occurred during the outbound
Figure 6.8b period starting at approximately 11pm and
lasting until about 1am the next day. The peak delay
was approximately 20 minutes.

Figure 6.9a and Figure 6.10a show the two week
travel time characteristics for Route 2. In general there
was no inbound congestion observed. The outbound
congestion characterized in Figure 6.10b indicates

Figure 6.7 Travel time scatter plots for inbound traffic on Route 1.
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congestion occurred from just after 11pm to just before
1am, but delay was less than ten minutes.

Figure 6.11a and Figure 6.12a show the two week
travel time characteristics for Route 3 through the
village area of campus where there are restaurants and
bars. In general there is very little inbound congestion.
The outbound congestion shown in Figure 6.12b again
show congestion lasting from approximately 11pm to
1am. Peak delays during this period were 20–25 minutes
along this segment.

Figure 6.13a and Figure 6.14a show the two week
travel time characteristics for Route 4. Figure 6.13b
indicates about 10 minutes of delay occur between 4pm
and 6pm and perhaps 8 minutes of delay around

midnight in the outbound direction (Figure 6.14b). It is
also clear that the outbound peak is over a shorter
interval.

6.5 Conclusions

This case study used data collected during a special
event to demonstrate how to collect quantitative special
event data documenting route choice and location of
congestion. Unlike many other special event data
collection efforts that either require intensive manual
labor or extensive permanent of surveillance technol-
ogy, this paper documents a methodology that employs
low-cost, battery power data collection devices that can

Figure 6.8 Travel time scatter plots for outbound traffic on Route 1.
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Figure 6.9 Travel time scatter plots for inbound traffic on Route 2.
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Figure 6.10 Travel time scatter plots for outbound traffic on Route 2.
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Figure 6.11 Travel time scatter plots for inbound traffic on Route 3.
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Figure 6.12 Travel time scatter plots for outbound traffic on Route 3.
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Figure 6.13 Travel time scatter plots for inbound traffic on Route 4.
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be cost-effectively deployed for virtually any special
event drawing a substantial crowd. Although only
twelve stations were deployed in this study, the
techniques presented can be easily scaled to denser
sensor deployments as other activities such as hurricane
evacuation, NASCAR races, or other similar events
where it is important to assess traffic management
activities to facilitate future improvement.

7. CONCLUSIONS

This document presented a collection of methodol-
ogies to assist a traffic analyst in the design of AVI

travel time data collection systems, and interpretation
of travel time data.

Chapter 2 described procedures needed to convert the
raw travel time data into information. The central concept
of this chapter and the subsequent text focused on the
construction of cumulative frequency diagrams as an
informative trace of the data characteristics (as opposed
to aggregated average values that mask higher resolution
characteristics). There was also a discussion of the
filtering of outliers, conversions of travel time to speed
or delay; a discussion of the number of samples needed
for statistical tests, as well as statistical procedures that
can be used to compare different case studies.

Figure 6.14 Travel time scatter plots for outbound traffic on Route 4.

55



Chapter 3 discussed sensor placement, with a
discussion of the impact of sensor location on what
information can be retrieved from the data in the
context of arterial systems, as well as the impact of
antenna height on the sample rate, as field-tested for
Bluetooth monitoring systems.

Chapter 4 presented case studies related to unin-
terrupted flow (i.e., freeways) including a discussion of
the impact of winter weather on travel characteristics,
and a prototype for fusing this data with other data sets
such as weather information to create a rich operational
dashboard.

Chapter 5 focused on the interrupted flow (i.e.,
signalized corridors). An extended discussion of signal
operations concepts was included to assist the discus-
sion. Three case studies were then presented to compare
various signal operating conditions with the resulting
travel time characteristics. The impact of arrival
characteristics was shown to relate to bimodal travel
time distributions. The impact of entry-exit detector
pairing on the data characteristics was discussed.
Finally, it was demonstrated how the travel time data
can be used to understand the economic benefit of
signal retiming, by converting the travel time difference
into monetary measures of impact.

Finally, Chapter 6 presented a case study on the use
of matched travel time data to develop an origin-
destination matrix at a city-wide level during a special
event in Lafayette, Indiana. This discussion included a
proposed methodology for filling in missing observa-
tions. A detailed discussion on the impact of the special
event was also presented.
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