39 research outputs found

    CARMA1- and MyD88-dependent activation of Jun/ATF-type AP-1 complexes is a hallmark of ABC diffuse large B-cell lymphomas.

    Get PDF
    A hallmark of the diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) type, a molecular subtype characterized by adverse outcome, is constitutive activation of the transcription factor nuclear factor-κB (NF-κB), which controls expression of genes promoting cellular survival and proliferation. Much less, however, is known about the role of the transcription factor activator protein-1 (AP-1) in ABC DLBCL. Here, we show that AP-1, like NF-κB, was controlled by constitutive activation of the B-cell receptor signaling component caspase recruitment domain-containing membrane-associated guanylate kinase 1 (CARMA1) and/or the Toll-like receptor signaling component myeloid differentiation primary response gene 88 (MyD88) in ABC DLBCL cell lines. In contrast to germinal center (GC) B-cell (GCB) DLBCL, ABC DLBCL cell lines expressed high levels of the AP-1 family members c-Jun, JunB, and JunD, which formed heterodimeric complexes with the AP-1 family members activating transcription factor (ATF) 2, ATF3, and ATF7. Inhibition of these complexes by a dominant-negative approach led to impaired growth of a majority of ABC DLBCL cell lines. Individual silencing of c-Jun, ATF2, or ATF3 decreased cellular survival and revealed c-Jun/ATF2-dependent control of ATF3 expression. As a consequence, ATF3 expression was much higher in ABC vs GCB DLBCL cell lines. Samples derived from DLBCL patients showed a clear trend toward high and nuclear ATF3 expression in nodal DLBCL of the non-GC or ABC subtype. These findings identify the activation of AP-1 complexes of the Jun/ATF-type as an important element controlling the growth of ABC DLBCL

    The Paracaspase MALT1 in Cancer

    No full text
    Almost twenty years ago, the importance of the paracaspase MALT1 in antigen receptor-induced NF-κB activation was first described. Since then, several other immune receptors, G-protein-coupled receptors, and receptor tyrosine kinases were identified as relying on MALT1 to induce NF-κB activation. In various hematological malignancies and solid tumors, MALT1 is constitutively activated and drives chronic NF-κB target gene expression. Deregulated MALT1 activity in cancer thus promotes tumor cell survival, proliferation, and metastasis. Since the molecular function of MALT1 partially requires its protease activity, pharmacological targeting of MALT1 may represent a promising anti-cancer strategy. Here, we review the molecular features of MALT1 activation and function as well as the therapeutic potential of MALT1 inhibition in hematological malignancies and solid tumors

    CARD14-mediated activation of paracaspase MALT1 in keratinocytes : implications for psoriasis

    No full text
    Mutations in caspase recruitment domain-containing protein 14 (CARD14) have been linked to susceptibility to psoriasis. CARD14 is an intracellular scaffold protein that regulates proinflammatory gene expression. Recent studies have offered novel insights into the mechanisms of CARD14-mediated signaling in keratinocytes and the molecular impact of psoriasis-associated CARD14 mutations. CARD14 forms a signaling complex with BCL10 and the paracaspase MALT1, and this process is enhanced upon pathogenic CARD14 mutation, culminating in the activation of MALT1 protease activity and psoriasis-associated gene expression. This review summarizes the current knowledge of CARD14/MALT1-mediated signaling in keratinocytes and its therapeutic implications in psoriasis
    corecore