2,976 research outputs found
Self-Serving Dictators and Economic Growth
A new line of theoretical and empirical literature emphasizes the pivotal role of fair institutions for growth.We present a model, a laboratory experiment, and a simple cross-country regression supporting this view.We model an economy with an unequal distribution of property rights, in which individuals can free-ride or cooperate.Experimentally we observe a dramatic drop in cooperation (and growth), when inequality is increased by a selfserving dictator.No such effect is observed when the inequality is increased by a fair procedure.Our regression analysis provides basic macroeconomic support for the adverse growth effect of the interaction between the degree and the genesis of inequality.We conclude that economies giving equal opportunities to all are not likely to suffer retarded growth due to inequality in the way economies with self-serving dictators will.economic growth;inequality;corruption;public goods
Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity
We propose a new method, the Helfand-moment method, to compute the shear
viscosity by equilibrium molecular dynamics in periodic systems. In this
method, the shear viscosity is written as an Einstein-like relation in terms of
the variance of the so-called Helfand moment. This quantity, is modified in
order to satisfy systems with periodic boundary conditions usually considered
in molecular dynamics. We calculate the shear viscosity in the Lennard-Jones
fluid near the triple point thanks to this new technique. We show that the
results of the Helfand-moment method are in excellent agreement with the
results of the standard Green-Kubo method.Comment: Submitted to the Journal of Chemical Physic
Inequality, Redistribution and Growth
inequality;redistribution;economic growth;taxation;political economy;lobbying
Water harvesting and sediment trapping in exclosures: a gully diversion experiment in the Tigray Highlands, Ethiopia
Runoff estimation and water management for the Holetta river in Ethiopia
The hydrology of Holetta River and its seasonal variability is not fully studied. In addition to this, due to scarcity of the available surface water and increase in water demand for irrigation, the major users of the river are facing a challenge to allocate the available water. Therefore, the aim of this research was to investigate the water availability of Holetta River and to study the water management in the catchment. Soil and Water Assessment Tool (SWAT) modelled the rainfall runoff process of the catchment. Statistical (coefficient of determination [R2], Nash- Sutcliffe Efficiency Coefficient [NSE] and Index of Volumetric Fit [IVF]) and graphical methods used to evaluate the performance of SWAT model. The result showed that R2, NSE and IVF were 0.85, 0.84 and 102.8, respectively for monthly calibration and 0.73, 0.67 and 108.9, respectively, for monthly validation. These indicated that SWAT model performed well for simulation of the hydrology of the watershed. After modelling the rainfall runoff relation and studying the availability of water at the Holetta River, the water demand of the area assessed. CropWat model and the survey analysis performed to calculate the water demand in the area. The total water demand of all three major users was 0.313, 0.583, 1.004, 0.873 and 0.341 MCM from January to May, respectively. The available river flow from January to May obtained from the result of SWAT simulation. The average flow was 0.749, 0.419, 0.829, 0.623 and 0.471 MCM from January to May respectively. From the five months, the demand and the supply showed a gap during February, March and April with 0.59 MCM. Therefore, in order to solve this problem alternative source of water supply should be studied and integrated water management system should be implemented
Interdisciplinary on-site evaluation of stone bunds to control soil erosion on cropland in Northern Ethiopia
Profile blunting and flow blockage in a yield stress fluid: A molecular dynamics study
The flow of a simple glass forming system (a 80:20 binary Lennard-Jones
mixture) through a planar channel is studied via molecular dynamics
simulations. The flow is driven by an external body force similar to gravity.
Previous studies show that the model exhibits both a static [Varnik et al. J.
Chem. Phys. 120, 2788 (2004)] and a dynamic [F. Varnik and O. Henrich Phys.
Rev. B 73, 174209 (2006)] yield stress in the glassy phase. \blue{These
observations are corroborated by the present work, where we investigate how the
presence of a yield stress may affect the system behavior in a Poiseuille-type
flow geometry.} In particular, we observe a blunted velocity profile across the
channel: A relatively wide region in the channel center flows with a constant
velocity (zero shear rate) followed by a non linear change of the shear rate as
the walls are approached. The observed velocity gradients are compared to those
obtained from the knowledge of the shear stress across the channel and the
flow-curves (stress versus shear rate), the latter being determined in our
previous simulations of homogeneous shear flow. Furthermore, using the value of
the (dynamic) yield stress known from previous simulations, we estimate the
threshold body force for a complete arrest of the flow. Indeed, a blockage is
observed as the imposed force falls below this threshold value. Small but
finite shear rates are observed at stresses above the dynamic but below the
static yield stress. We discuss the possible role of the \blue{stick-slip like
motion} for this observation.Comment: 22 pages, 8 figure
A second eigenvalue bound for the Dirichlet Schroedinger operator
Let be the th eigenvalue of the Schr\"odinger
operator with Dirichlet boundary conditions on a bounded domain and with the positive potential . Following the spirit of the
Payne-P\'olya-Weinberger conjecture and under some convexity assumptions on the
spherically rearranged potential , we prove that . Here denotes the ball, centered at the
origin, that satisfies the condition .
Further we prove under the same convexity assumptions on a spherically
symmetric potential , that decreases
when the radius of the ball increases.
We conclude with several results about the first two eigenvalues of the
Laplace operator with respect to a measure of Gaussian or inverted Gaussian
density
Irreversibility in response to forces acting on graphene sheets
The amount of rippling in graphene sheets is related to the interactions with
the substrate or with the suspending structure. Here, we report on an
irreversibility in the response to forces that act on suspended graphene
sheets. This may explain why one always observes a ripple structure on
suspended graphene. We show that a compression-relaxation mechanism produces
static ripples on graphene sheets and determine a peculiar temperature ,
such that for the free-energy of the rippled graphene is smaller than
that of roughened graphene. We also show that depends on the structural
parameters and increases with increasing sample size.Comment: 4 pages, 4 Figure
- …
