30 research outputs found

    Electrophysiological Investigations of Prion Protein Roles in Health and Disease

    Get PDF
    Prion diseases are transmissible and fatal neurological disorders associated with the misfolding of cellular prion protein (PrPC) into disease-causing isoforms (PrPD) in the central nervous system. The diseases have three etiologies; acquired through exposure to the infectious PrPD, sporadic, arising from no known cause, and hereditary due to familial mutations within the PRNP gene. The manifestation of clinical signs is associated with the disruption of neuronal activity and subsequent degeneration of neurons. To generate insight into the mechanisms by which neuronal activity becomes disrupted in prion diseases, electrophysiological techniques have been applied to closely study the electrical signaling properties of neurons that lack functional PrPC as well as neurons that are developing pathological features of prion diseases due to infection or genetic mutation. In this review, we will compile the electrophysiological evidences of neurophysiological roles of PrPC, how those roles are changed in neurons that are developing prion diseases, and how disease-associated effects are exacerbated during the clinical stage of disease

    _

    Get PDF
    SUMMARY Oxidative stress as a contributor to neuronal death during prion infection is supported by the fact that various oxidative damage markers accumulate in the brain during the course of this disease. The normal cellular substrate of the causative agent, the prion protein, is also linked with protective functions against oxidative stress. Our previous work has found that, in chronic prion infection, an apoptotic subpopulation of cells exhibit oxidative stress and the accumulation of oxidised lipid and protein aggregates with caspase recruitment. Given the likely failure of antioxidant defence mechanisms within apoptotic prion-infected cells, we aimed to investigate the role of the crucial antioxidant pathway components, superoxide dismutases (SOD) 1 and 2, in an in vitro model of chronic prion infection. Increased total SOD activity, attributable to SOD1, was found in the overall population coincident with a decrease in SOD2 protein levels. When apoptotic cells were separated from the total population, the induction of SOD activity in the infected apoptotic cells was lost, with activity reduced back to levels seen in mock-infected control cells. In addition, mitochondrial superoxide production was increased and mitochondrial numbers decreased in the infected apoptotic subpopulation. Furthermore, a pan-caspase probe colocalised with SOD2 outside of mitochondria within cytosolic aggregates in infected cells and inhibition of caspase activity was able to restore cellular levels of SOD2 in the whole unseparated infected population to those of mock-infected control cells. Our results suggest that prion propagation exacerbates an apoptotic pathway whereby mitochondrial dysfunction follows mislocalisation of SOD2 to cytosolic caspases, permitting its degradation. Eventually, cellular capacity to maintain oxidative homeostasis is overwhelmed, thus resulting in cell death

    Sporadic Creutzfeldt-Jakob disease infected human cerebral organoids retain the original human brain subtype features following transmission to humanized transgenic mice

    Get PDF
    Human cerebral organoids (COs) are three-dimensional self-organizing cultures of cerebral brain tissue differentiated from induced pluripotent stem cells. We have recently shown that COs are susceptible to infection with different subtypes of Creutzfeldt-Jakob disease (CJD) prions, which in humans cause different manifestations of the disease. The ability to study live human brain tissue infected with different CJD subtypes opens a wide array of possibilities from differentiating mechanisms of cell death and identifying neuronal selective vulnerabilities to testing therapeutics. However, the question remained as to whether the prions generated in the CO model truly represent those in the infecting inoculum. Mouse models expressing human prion protein are commonly used to characterize human prion disease as they reproduce many of the molecular and clinical phenotypes associated with CJD subtypes. We therefore inoculated these mice with COs that had been infected with two CJD subtypes (MV1 and MV2) to see if the original subtype characteristics (referred to as strains once transmitted into a model organism) of the infecting prions were maintained in the COs when compared with the original human brain inocula. We found that disease characteristics caused by the molecular subtype of the disease associated prion protein were similar in mice inoculated with either CO derived material or human brain material, demonstrating that the disease associated prions generated in COs shared strain characteristics with those in humans. As the first and only in vitro model of human neurodegenerative disease that can faithfully reproduce different subtypes of prion disease, these findings support the use of the CO model for investigating human prion diseases and their subtypes

    Sporadic Creutzfeldt-Jakob disease prion infection of human cerebral organoids

    Get PDF
    For the transmissible, neurogenerative family of prion diseases, few human models of infection exist and none represent structured neuronal tissue. Human cerebral organoids are self-organizing, three-dimensional brain tissues that can be grown from induced pluripotent stem cells. Organoids can model aspects of neurodegeneration in Alzheimer's Disease and Down's Syndrome, reproducing tau hyperphosphorylation and amyloid plaque pathology. To determine whether organoids could be used to reproduce human prion infection and pathogenesis, we inoculated organoids with two sporadic Creutzfeldt-Jakob Disease prion subtypes. Organoids showed uptake, followed by clearance, of the infectious inoculum. Subsequent re-emergence of prion self-seeding activity indicated de novo propagation. Organoid health assays, prion titer, prion protein electrophoretic mobility and immunohistochemistry demonstrated inoculum-specific differences. Our study shows, for the first time, that cerebral organoids can model aspects of human prion disease and thus offer a powerful system for investigating different human prion subtype pathologies and testing putative therapeutics

    α-Synuclein seeding activity in duodenum biopsies from Parkinson's disease patients

    Get PDF
    Abnormal deposition of α-synuclein is a key feature and biomarker of Parkinson's disease. α-Synuclein aggregates can propagate themselves by a prion-like seeding-based mechanism within and between tissues and are hypothesized to move between the intestine and brain. α-Synuclein RT-QuIC seed amplification assays have detected Parkinson's-associated α-synuclein in multiple biospecimens including post-mortem colon samples. Here we show intra vitam detection of seeds in duodenum biopsies from 22/23 Parkinson's patients, but not in 6 healthy controls by RT-QuICR. In contrast, no tau seeding activity was detected in any of the biopsies. Our seed amplifications provide evidence that the upper intestine contains a form(s) of α-synuclein with self-propagating activity. The diagnostic sensitivity and specificity for PD in this biopsy panel were 95.7% and 100% respectively. End-point dilution analysis indicated up to 106 SD50 seeding units per mg of tissue with positivity in two contemporaneous biopsies from individual patients suggesting widespread distribution within the superior and descending parts of duodenum. Our detection of α-synuclein seeding activity in duodenum biopsies of Parkinson's disease patients suggests not only that such analyses may be useful in ante-mortem diagnosis, but also that the duodenum may be a source or a destination for pathological, self-propagating α-synuclein assemblies

    Copper-dependent co-internalization of the prion protein and glypican-1.

    No full text
    Heparan sulfate chains have been found to be associated with amyloid deposits in a number of diseases including transmissible spongiform encephalopathies. Diverse lines of evidence have linked proteoglycans and their glycosaminoglycan chains, and especially heparan sulfate, to the metabolism of the prion protein isoforms. Glypicans are a family of glycosylphosphatidylinositol-anchored, heparan sulfate-containing, cell-associated proteoglycans. Cysteines in glypican-1 can become nitrosylated by endogenously produced nitric oxide. When glypican-1 is exposed to a reducing agent, such as ascorbate, nitric oxide is released and autocatalyses deaminative cleavage of heparan sulfate chains. These processes take place while glypican-1 recycles via a non-classical, caveolin-associated pathway. We have previously demonstrated that prion protein provides the Cu2+ ions required to nitrosylate thiol groups in the core protein of glypican-1. By using confocal immunofluorescence microscopy and immunomagnetic techniques, we now show that copper induces co-internalization of prion protein and glypican-1 from the cell surface to perinuclear compartments. We find that prion protein is controlling both the internalization of glypican-1 and its nitric oxide-dependent autoprocessing. Silencing glypican-1 expression has no effect on copper-stimulated prion protein endocytosis, but in cells expressing a prion protein construct lacking the copper binding domain internalization of glypican-1 is much reduced and autoprocessing is abrogated. We also demonstrate that heparan sulfate chains of glypican-1 are poorly degraded in prion null fibroblasts. The addition of either Cu2+ ions, nitric oxide donors, ascorbate or ectopic expression of prion protein restores heparan sulfate degradation. These results indicate that the interaction between glypican-1 and Cu2+-loaded prion protein is required both for co-internalization and glypican-1 self-pruning

    The Prion Protein N1 and N2 Cleavage Fragments Bind to Phosphatidylserine and Phosphatidic Acid; Relevance to Stress-Protection Responses

    Get PDF
    <div><p>Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS), as previously reported, and a further interaction with phosphatidic acid (PA) was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation). Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response.</p></div

    Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrP<sup>res </sup>level disparity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prion disease transmission and pathogenesis are linked to misfolded, typically protease resistant (PrP<sup>res</sup>) conformers of the normal cellular prion protein (PrP<sup>C</sup>), with the former posited to be the principal constituent of the infectious 'prion'. Unexplained discrepancies observed between detectable PrP<sup>res </sup>and infectivity levels exemplify the complexity in deciphering the exact biophysical nature of prions and those host cell factors, if any, which contribute to transmission efficiency. In order to improve our understanding of these important issues, this study utilized a bioassay validated cell culture model of prion infection to investigate discordance between PrP<sup>res </sup>levels and infectivity titres at a subcellular resolution.</p> <p>Findings</p> <p>Subcellular fractions enriched in lipid rafts or endoplasmic reticulum/mitochondrial marker proteins were equally highly efficient at prion transmission, despite lipid raft fractions containing up to eight times the levels of detectable PrP<sup>res</sup>. Brain homogenate infectivity was not differentially enhanced by subcellular fraction-specific co-factors, and proteinase K pre-treatment of selected fractions modestly, but equally reduced infectivity. Only lipid raft associated infectivity was enhanced by sonication.</p> <p>Conclusions</p> <p>This study authenticates a subcellular disparity in PrP<sup>res </sup>and infectivity levels, and eliminates simultaneous divergence of prion strains as the explanation for this phenomenon. On balance, the results align best with the concept that transmission efficiency is influenced more by intrinsic characteristics of the infectious prion, rather than cellular microenvironment conditions or absolute PrP<sup>res </sup>levels.</p

    N2 binds PS and PA lipid spots.

    No full text
    <p><b>A.</b> Schematic indicating the lipid spot arrangement on the membrane. <b>B.</b> PrP23-89 (N2) incubation with the lipid spot blots at pH 7 and pH 5 with and without pre-loading with four molar equivalents CuCl<sub>2</sub> followed by western blotting with SAF32 antibody (directed against amino acids 51–89). <b>C.</b> Densitometric quantification of spot intensity, n = 3, significance over blank control and between conditions is shown as *p<0.05, **p<0.01, ***p<0.001.</p
    corecore