13 research outputs found

    Charm production and fragmentation fractions at midrapidity in pp collisions at s s \sqrt{\textrm{s}} = 13 TeV

    No full text
    Abstract Measurements of the production cross sections of prompt D0, D+, D*+, D s + Ds+ {\textrm{D}}_{\textrm{s}}^{+} , Λ c + Λc+ {\Lambda}_{\textrm{c}}^{+} , and Ξ c + Ξc+ {\Xi}_{\textrm{c}}^{+} charm hadrons at midrapidity in proton-proton collisions at s s \sqrt{s} = 13 TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum (p T) are provided with improved precision and granularity. The ratios of p T-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-x (10 −5–10 −4). The measurements of Λ c + Λc+ {\Lambda}_{\textrm{c}}^{+} ( Ξ c + Ξc+ {\Xi}_{\textrm{c}}^{+} ) baryon production extend the measured p T intervals down to p T = 0(3) GeV/c. These measurements are used to determine the charm-quark fragmentation fractions and the c c ¯ cc \textrm{c}\overline{\textrm{c}} production cross section at midrapidity (|y| < 0.5) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons D0, D+, D s + Ds+ {\textrm{D}}_{\textrm{s}}^{+} , Λ c + Λc+ {\Lambda}_{\textrm{c}}^{+} , Ξ c 0 Ξc0 {\Xi}_{\textrm{c}}^0 and, for the first time, Ξ c + Ξc+ {\Xi}_{\textrm{c}}^{+} , and of the strongly-decaying J/ψ mesons. The first measurements of Ξ c + Ξc+ {\Xi}_{\textrm{c}}^{+} and Σ c 0 , + + Σc0,++ {\Sigma}_{\textrm{c}}^{0,++} fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e+e − and ep collisions. The c c ¯ cc \textrm{c}\overline{\textrm{c}} production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations

    Measurement of non-prompt D -meson elliptic flow in Pb–Pb collisions at √sNN=5.02 TeV

    No full text
    The elliptic flow (v2) of D mesons from beauty-hadron decays (non-prompt D) was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02 TeV with the ALICE detector at the LHC. The D mesons were reconstructed at midrapidity (| y| < 0.8) from their hadronic decay D → K -π + , in the transverse momentum interval 2 < pT< 12 GeV/c. The result indicates a positive v2 for non-prompt D mesons with a significance of 2.7 σ . The non-prompt D -meson v2 is lower than that of prompt non-strange D mesons with 3.2 σ significance in 2<8GeV/c , and compatible with the v2 of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties

    Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies

    No full text

    System-size dependence of the hadronic rescattering effect at energies available at the CERN Large Hadron Collider

    No full text
    International audienceThe first measurements of K*(892)0 resonance production as a function of charged-particle multiplicity in Xe-Xe collisions at sNN=5.44 TeV and pp collisions ats=5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity (|y| &lt; 0.5) using the hadronic decay channel K*0 →K±π∓. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of K*0, and yield ratios of resonance to stable hadron (K*0/K) are compared across different collision systems (pp, p-Pb, Xe-Xe, and Pb-Pb) at similar collision energies to investigate how the production of K*0 resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of K*0 in Xe-Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using the hadron resonance gas–partial chemical equilibrium model

    System-size dependence of the hadronic rescattering effect at energies available at the CERN Large Hadron Collider

    No full text

    Charged-particle production as a function of the relative transverse activity classifier in pp, p–Pb, and Pb–Pb collisions at the LHC

    No full text

    Charm production and fragmentation fractions at midrapidity in pp collisions at √s=13 TeV

    No full text

    Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at √s=13 TeV and in p-Pb collisions at √sNN=5.02 TeV

    No full text

    Prompt and non-prompt J/ψ production at midrapidity in Pb-Pb collisions at √sNN=5.02 TeV

    No full text

    Probing the Chiral Magnetic Wave with charge-dependent flow measurements in Pb-Pb collisions at the LHC

    No full text
    International audienceThe Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN=\sqrt{s_{\mathrm{NN}}}= 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic (v2v_{2}) and triangular (v3v_{3}) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope r3Normr_{3}^{\rm Norm} is found to be larger than zero and to have a magnitude similar to r2Normr_{2}^{\rm Norm}, thus pointing to a large background contribution for these measurements. Furthermore, r2Normr_{2}^{\rm Norm} can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW (fCMWf_{\rm CMW}) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for fCMWf_{\rm CMW}, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level
    corecore