87 research outputs found

    An Updated Search of Steady TeV γ\gamma-Ray Point Sources in Northern Hemisphere Using the Tibet Air Shower Array

    Full text link
    Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November-2005 November), our previous northern sky survey for TeV γ\gamma-ray point sources has now been updated by a factor of 2.8 improved statistics. From 0.00.0^{\circ} to 60.060.0^{\circ} in declination (Dec) range, no new TeV γ\gamma-ray point sources with sufficiently high significance were identified while the well-known Crab Nebula and Mrk421 remain to be the brightest TeV γ\gamma-ray sources within the field of view of the Tibet air shower array. Based on the currently available data and at the 90% confidence level (C.L.), the flux upper limits for different power law index assumption are re-derived, which are approximately improved by 1.7 times as compared with our previous reported limits.Comment: This paper has been accepted by hepn

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Optimizing the Preparation of Semi-Crystalline Paraffin/Poly(Urea-Formaldehyde) Microcapsules for Thermal Energy Storage

    No full text
    Paraffin, the most common phase change material, has been widely utilized as the core component in thermal energy storage in the form of microcapsules. In this study, semi-crystalline paraffin is capsulated into a poly(urea-formaldehyde) (PUF) shell by a two-step polymerization process. To obtain the microcapsule with good morphology and high latent heat, sodium chloride and crosslinker (a mixture of ammonium chloride and resorcinol with a weight ratio of 1:1) are incorporated and their addition amounts were optimized through differential scanning calorimetry (DSC) and SEM. The optimized microcapsules were obtained by adding 4 wt% sodium chloride, and 0.25 wt% crosslinker exhibits a diameter of several microns and a melting enthalpy of 110 J/g. This detailed study shows that sodium chloride strongly affects the morphology of paraffin emulsion by enlarging droplets, widening the size distribution, and enhancing the stability, which should be attributed to the enhancement of electric double layer strength. In addition, sodium chloride can weaken the Zeta potential of prepolymer and provides more opportunity for prepolymer to deposit on the surface of emulsion droplets. The two components in crosslinker play different roles in the polymerization process. Ammonium chloride reacts with prepolymers and reduces the pH of system, which can accelerate the curing process, while resorcinol probably participates in polymerization as a comonomer

    Dependence of Crystallization Behavior of Interacting Telechelic Poly(butylene succinate) Oligomer on Molecular Weight

    No full text
    A large spherulite structure deteriorates the mechanical properties of crystalline polymers, and therefore various methods have been explored to increase primary nucleation density. Recently, chain-end modification has been proposed as an effective approach for regulating polymer crystal nucleation. However, the relevant nucleation mechanism still requires investigation. Therefore, in this work, 2-ureido-4[1H]-pyrimidinone (UPy) units, which can form stacks via quadruple hydrogen bonds with each other, are introduced as end groups for the preparation of interacting telechelic poly(butylene succinate) (PBS-UPy) oligomers with different molecular weights (Mns). The crystallization, especially the nucleation behavior of PBS-UPy, is studied in detail by comparing with the corresponding pre-polymer, the hydroxyl-terminal PBS (PBS-OH). The thermal properties of PBS-UPy exhibit similar Mn-dependent tendency to those of PBS-OH, but with weaker total crystallization rate. The spherulite growth rate is significantly reduced, whereas the primary nucleation density is highly promoted, after introducing UPy groups. Further investigation reveals that the mechanism of UPy stacks’ influence on nucleation ability changes from inhibition to promotion with respect to Mn. Even under an inhibition of nucleation ability, the final nucleation density is obviously increased because of a significant decline of the growth rate. In addition, the change in the impact of UPy stacks on nucleation ability is speculated to originate from the memory expression feasibility of ordered conformation in the melt during crystallization

    Enhancing Stereocomplexation Ability of Polylactide by Coalescing from Its Inclusion Complex with Urea

    No full text
    In this study, polylactide/urea complexes were successfully prepared by the electrospinning method, then the host urea component was removed to obtain a coalesced poly(L-lactide) (PLLA)/poly(D-lactide) (PDLA) blend. The crystallization behavior of the coalesced PLLA/PDLA blend (c-PLLA/PDLA) was studied by a differential scanning calorimeter (DSC) and Fourier transform infrared (FTIR) spectroscopy. The c-PLLA/PDLA was found to show better crystallization ability than normal PLLA/PDLA blend (r-PLLA/PDLA). More interestingly, the c-PLLA/PDLA effectively and solely crystallized into stereocomplex crystals during the non-isothermal melt-crystallization process, and the reason was attributed to the equally-distributing state of PLLA and PDLA chains in the PLLA/PDLA/urea complex, which led to good interconnection between PLLA and PDLA chains when the urea frameworks were instantly removed

    Dependence of Crystallization Behavior of Interacting Telechelic Poly(butylene succinate) Oligomer on Molecular Weight

    No full text
    A large spherulite structure deteriorates the mechanical properties of crystalline polymers, and therefore various methods have been explored to increase primary nucleation density. Recently, chain-end modification has been proposed as an effective approach for regulating polymer crystal nucleation. However, the relevant nucleation mechanism still requires investigation. Therefore, in this work, 2-ureido-4[1H]-pyrimidinone (UPy) units, which can form stacks via quadruple hydrogen bonds with each other, are introduced as end groups for the preparation of interacting telechelic poly(butylene succinate) (PBS-UPy) oligomers with different molecular weights (Mns). The crystallization, especially the nucleation behavior of PBS-UPy, is studied in detail by comparing with the corresponding pre-polymer, the hydroxyl-terminal PBS (PBS-OH). The thermal properties of PBS-UPy exhibit similar Mn-dependent tendency to those of PBS-OH, but with weaker total crystallization rate. The spherulite growth rate is significantly reduced, whereas the primary nucleation density is highly promoted, after introducing UPy groups. Further investigation reveals that the mechanism of UPy stacks’ influence on nucleation ability changes from inhibition to promotion with respect to Mn. Even under an inhibition of nucleation ability, the final nucleation density is obviously increased because of a significant decline of the growth rate. In addition, the change in the impact of UPy stacks on nucleation ability is speculated to originate from the memory expression feasibility of ordered conformation in the melt during crystallization
    corecore