212 research outputs found

    Blockchain Sharding and Incentive Mechanism for 6G Dependable Intelligence

    Get PDF
    The sixth generation(6G) wireless communication network will become the base of endogenous intelligence,ubiquitous connectivity,and full-scene interconnection.It is an important basis to realize dependable intelligence in the future.Blockchain is considered as the key decentralized-enabled technology to improve the performance of 6G networks.In the future,the consensus nodes of the blockchain will be composed of massive edge devices and connected through wireless networks.However,motivating self-interest edge devices to participate in the consensus process still faces the challenges of information asymmetry,resource constraints and heterogeneous wireless communication environment.To solve these challenges,a blockchain sharding framework and an incentive mechanism for trusted and dependable intelligence in 6G are proposed.Firstly,an incentive mechanism is presented based on contract theory,which aims to maximize the benefits and reliability of the blockchain sharding.By analyzing the practical byzantine fault tolerance (PBFT) based intrashard consensus mechanism,this paper design energy consumption model for auditing and transmitting the blocks in wireless networks.Secondly,in order to improve the system reliability,it proposes a reputation mechanism based on subjective logic.Finally,a set of optimal contracts under complete information and asymmetric information scnearios are abtained,which could optimize the block revenue for blockchain service requester,while ensuring some desired economic properties,i.e.,budget feasibility,individual rationality and incentive compatibility.Simulation results show that the proposed contract-based incentive mechanism can motivate edge devices to participate in the blockchain consensus process and maintain the operation of blockchain from the perspective of economics more efficiently

    Diffraction-Free Bloch Surface Waves

    Full text link
    In this letter, we demonstrate a novel diffraction-free Bloch surface wave (DF-BSW) sustained on all-dielectric multilayers that does not diffract after being passed through three obstacles or across a single mode fiber. It can propagate in a straight line for distances longer than 110 {\mu}m at a wavelength of 633 nm and could be applied as an in-plane optical virtual probe, both in air and in an aqueous environment. The ability to be used in water, its long diffraction-free distance, and its tolerance to multiple obstacles make this DF-BSW ideal for certain applications in areas such as the biological sciences, where many measurements are made on glass surfaces or for which an aqueous environment is required, and for high-speed interconnections between chips, where low loss is necessary. Specifically, the DF-BSW on the dielectric multilayer can be used to develop novel flow cytometry that is based on the surface wave, but not the free space beam, to detect the surface-bound targets

    The Nematic Energy Scale and the Missing Electron Pocket in FeSe

    Get PDF
    Superconductivity emerges in proximity to a nematic phase in most iron-based superconductors. It is therefore important to understand the impact of nematicity on the electronic structure. Orbital assignment and tracking across the nematic phase transition prove to be challenging due to the multiband nature of iron-based superconductors and twinning effects. Here, we report a detailed study of the electronic structure of fully detwinned FeSe across the nematic phase transition using angle-resolved photoemission spectroscopy. We clearly observe a nematicity-driven band reconstruction involving dxz, dyz, and dxy orbitals. The nematic energy scale between dxz and dyz bands reaches a maximum of 50 meV at the Brillouin zone corner. We are also able to track the dxz electron pocket across the nematic transition and explain its absence in the nematic state. Our comprehensive data of the electronic structure provide an accurate basis for theoretical models of the superconducting pairing in FeSe

    Predicting Complex Relaxation Processes in Metallic Glass

    Get PDF
    Relaxation processes significantly influence the properties of glass materials. However, understanding their specific origins is difficult; even more challenging is to forecast them theoretically. In this study, using microseconds molecular dynamics simulations together with an accurate many-body interaction potential, we predict that an Al90Sm10 metallic glass would have complex relaxation behaviors: In addition to the main (α) relaxation, the glass (i) shows a pronounced secondary (β) relaxation at cryogenic temperatures and (ii) exhibits an anomalous relaxation process (α2) accompanying α relaxation. Both of the predictions are verified by experiments. Computational simulations reveal the microscopic origins of relaxation processes: while the pronounced β relaxation is attributed to the abundance of stringlike cooperative atomic rearrangements, the anomalous α2 process is found to correlate with the decoupling of the faster motions of Al with slower Sm atoms. The combination of simulations and experiments represents a first glimpse of what may become a predictive routine and integral step for glass physics

    Wear Behavior of a Heat-Treatable Al-3.5Cu-1.5Mg-1Si Alloy Manufactured by Selective Laser Melting

    Get PDF
    In this study, the wear behavior of a heat-treatable Al-7Si-0.5Mg-0.5Cu alloy fabricated by selective laser melting was investigated systematically. Compared with the commercial homogenized AA2024 alloy, the fine secondary phase of the SLM Al-Cu-Mg-Si alloy leads to a low specific wear rate (1.8 ± 0.11 × 10-4 mm3(Nm)-1) and a low average coefficient of friction (0.40 ± 0.01). After the T6 heat treatment, the SLM Al-Cu-Mg-Si alloy exhibits a lower specific wear rate (1.48 ± 0.02 × 10-4 mm3(Nm)-1), but a similar average coefficient of friction (0.34 ± 0.01) as the heat-treated AA2024 alloy. Altogether, the SLM Al-3.5Cu-1.5Mg-1Si alloy is suitable for the achievement of not only superior mechanical performance, but also improved tribological properties
    corecore