35 research outputs found

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H

    patients with age-related macular degeneration

    No full text
    Purpose: To investigate the complement factor H related 5 (CFHR5) gene, encoding a member of the complement factor H family, for the presence of genetic polymorphisms or mutations associated with age-related macular degeneration (AMD). Methods: We screened 639 unrelated patients with AMD and 663 age-matched normal controls using direct genomic sequencing of the ten coding exons, along with the immediately flanking intronic DNA. The pathologic impact of the identified sequence variants were analyzed by computational methods using PolyPhen and PMut algorithms. Results: We identified five heterozygous sequence changes in CFHR5. Asp169Asp had a minor allele frequency of 0.001 % in patients and 0.014 % in controls (p&lt;0.0001), while Arg356His had a minor allele frequency of 0.016 % in patients and 0.007 % in controls. Val379Leu, Met514Arg, and Cys568Ter were found only in normal controls. In silico analysis predicted Arg356His and Val379Leu to be neutral and benign. Met514Arg was predicted to be pathological and damaging to the function of the CFHR5 protein. Conclusions: No definitive pathogenic CFHR5 mutations have been found in any of 639 unrelated patients with AMD, indicating that sequence variations in CFHR5 do not play a major role in determining AMD susceptibility. However, our findings suggest a possible protective role for Asp169Asp. Further studies of different and larger populations of patient and control samples will be required to address this observation

    Involvement of Endoplasmic Reticulum Stress in TULP1 Induced Retinal Degeneration.

    No full text
    Inherited retinal disorders (IRDs) result in severe visual impairments in children and adults. A challenge in the field of retinal degenerations is identifying mechanisms of photoreceptor cell death related to specific genetic mutations. Mutations in the gene TULP1 have been associated with two forms of IRDs, early-onset retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA). TULP1 is a cytoplasmic, membrane-associated protein shown to be involved in transportation of newly synthesized proteins destined for the outer segment compartment of photoreceptor cells; however, how mutant TULP1 causes cell death is not understood. In this study, we provide evidence that common missense mutations in TULP1 express as misfolded protein products that accumulate within the endoplasmic reticulum (ER) causing prolonged ER stress. In an effort to maintain protein homeostasis, photoreceptor cells then activate the unfolded protein response (UPR) complex. Our results indicate that the two major apoptotic arms of the UPR pathway, PERK and IRE1, are activated. Additionally, we show that retinas expressing mutant TULP1 significantly upregulate the expression of CHOP, a UPR signaling protein promoting apoptosis, and undergo photoreceptor cell death. Our study demonstrates that the ER-UPR, a known mechanism of apoptosis secondary to an overwhelming accumulation of misfolded protein, is involved in photoreceptor degeneration caused by missense mutations in TULP1. These observations suggest that modulating the UPR pathways might be a strategy for therapeutic intervention
    corecore