6 research outputs found

    A summer time series of particulate carbon in the air and snow at Summit, Greenland

    Get PDF
    Carbonaceous particulate matter is ubiquitous in the lower atmosphere, produced by natural and anthropogenic sources and transported to distant regions, including the pristine and climate-sensitive Greenland Ice Sheet. During the summer of 2006, ambient particulate carbonaceous compounds were characterized on the Greenland Ice Sheet, including the measurement of particulate organic (OC) and elemental (EC) carbon, particulate water-soluble organic carbon (WSOC), particulate absorption coefficient (σap), and particle size-resolved number concentration (PM0.1–1.0). Additionally, parallel ∼50-day time series of water-soluble organic carbon (WSOC), water-insoluble organic carbon (WIOC), and elemental carbon (EC) were quantified at time increments of 4–24 h in the surface snow. Measurement of atmospheric particulate carbon found WSOC (average of 52 ng m−3) to constitute a major fraction of particulate OC (average of 56 ng m−3), suggesting that atmospheric organic compounds reaching the Greenland Ice Sheet in summer are highly oxidized. Atmospheric EC (average of 7 ng m−3) was well-correlated with σap (r = 0.95) and the calculated mass-absorption cross-section (average of 24 m2 g−1) appears to be similar to that measured using identical techniques in an urban environment in the United States. Comparing surface snow to atmospheric particulate matter concentrations, it appears the snow has a much higher OC (WSOC+WIOC) to EC ratio (205:1) than air (10:1), suggesting that snow is additionally influenced by water-soluble gas-phase compounds. Finally, the higher-frequency (every 4–6 h) sampling of snow-phase WSOC revealed significant loss (40–54%) of related organic compounds in surface snow within 8 h of wet deposition

    Particulate and water-soluble carbon measured in recent snow at Summit, Greenland

    Get PDF
    Water-soluble organic carbon (WSOC), waterinsoluble particulate organic carbon (WIOC), and particulate elemental carbon (EC) were measured simultaneously for the first time on the Greenland Ice Sheet in surface snow and in a 3-meter snow pit. Snow pit concentrations reveal that, on average, WSOC makes up the majority (89%) of carbonaceous species, followed by WIOC (10%) and EC (1%). The enhancement of OC relative to EC (ratio 99:1) in Greenland snow suggests that, along with atmospheric particulate matter, gaseous organics contribute to snow-phase OC. Comparison of summer surface snow concentrations in 2006 with past summer snow pit layers (2002 – 2005) found a significant depletion in WSOC (20 – 82%) and WIOC (46 – 65%) relative to EC for 3 of the 4 years. The apparent substantial loss of WSOC and WIOC in aged snow suggests that post-depositional processes, such as photochemical reactions, need to be considered in linking ice core records of organics to atmospheric concentrations. Citation: Hagler, G. S. W., M. H. Bergin, E. A. Smith, J. E. Dibb, C. Anderson, and E. J. Steig (2007), Particulate and water-soluble carbon measured in recent snow at Summit, Greenland, Geophys. Res. Lett., 34, L16505, doi:10.1029/2007GL030110

    Field assessment of the effects of roadside vegetation on near-road black carbon and particulate matter

    Get PDF
    One proposed method for reducing exposure to mobile source air pollution is the construction or preservation of vegetation barriers between major roads and nearby populations. This study combined stationary and mobile monitoring approaches to determine the effects of an existing, mixed-species tree stand on near-road black carbon (BC) and particulate matter concentrations. Results indicated that wind direction and time of day significantly affected pollutant concentrations behind the tree stand. Continuous sampling revealed reductions in BC behind the barrier, relative to a clearing, during downwind (12.4% lower) and parallel (7.8% lower) wind conditions,with maximumreductions of 22% during the late afternoon when winds were fromthe road. Particle counts in the fine and coarse particle size range (0.5–10 μm aerodynamic diameter) did not show change. Mobile sampling revealed BC concentration attenuation, a result of the natural dilution and mixing that occur with transport from the road, was more gradual behind the vegetation barrier than in unobstructed areas. These findings suggest that a mature tree stand can modestly improve traffic-related air pollution in areas located adjacent to the road; however, the configuration of the tree stand can influence the likelihood and extent of pollutant reductions

    Atmospheric water-soluble organic carbon measurements at Summit, Greenland

    No full text
    The recently discovered active photochemistry in the surface layers of polar snow may complicate the interpretation of organic compounds found in ice cores. In order to better understand the transformation and cycling of organic species in Arctic surface snow, measurements of water-soluble organic carbon (WSOC) in the gas (WSOCG) and particle (WSOCP) phases were made during the 2006 summer season at Summit, Greenland. These samples represent the first direct, simultaneous measurements of both WSOCG and WSOCP at Summit. From early June to early July, WSOCG and WSOCP concentrations at 150 cm above the snow averaged 667 and 194 ng C m−3, respectively. This value for WSOCG is very similar in magnitude to the sum of acetic and formic acid gas concentrations measured during previous summers at Summit, suggesting that these two monocarboxylic acids constitute a significant fraction of the mass of measured WSOCG. Firn air measurements of WSOCG revealed concentrations within the snowpack nearly an order of magnitude greater than those in the air just above the snow. During one period, four out of five consecutive nights showed concurrent decreases in WSOCG and increases in WSOCP, likely resulting from temperature-dependent gas-to-particle partitioning, as these episodes occurred during the coldest part of the early morning

    Characterization of Spatial Air Pollution Patterns Near a Large Railyard Area in Atlanta, Georgia

    No full text
    Railyards are important transportation hubs, and they are often situated near populated areas with high co-located density of manufacturing, freight movement and commercial enterprises. Emissions occurring within railyards can affect nearby air quality. To better understand the air pollution levels in proximity to a major railyard, an intensive mobile air monitoring study was conducted in May 2012 around a major railyard area in Atlanta, GA, constituted of two separate facilities situated side-by-side. A total of 19 multi-hour mobile monitoring sessions took place over different times of day, days of the week, and under a variety of wind conditions. High time resolution measurements included black carbon (BC), particle number concentration (PN), particle optical extinction (EXT), oxides of nitrogen (NO, NO2, NOy), carbon monoxide (CO), and speciated air toxics. Urban background was estimated to contribute substantially (>70%) to EXT and CO, whereas BC, oxides of nitrogen (NOx) and toluene had comparably low background contributions (<30%). Mobile monitoring data were aggregated into 50 meter spatial medians by wind categories, with categories including low speed wind conditions (<0.5 m s−1) and, for wind speeds above that threshold, by wind direction relative to the railyard. Spatial medians of different pollutants measured had a wide range of correlation—gas-phase air toxics (benzene, toluene, acetaldehyde) had moderate correlation with each other (r = 0.46⁻0.59) and between toluene and CO (r = 0.53), but lower correlation for other pairings. PN had highest correlation with oxides of nitrogen (r = 0.55⁻0.66), followed by BC (r = 0.4), and lower correlation with other pollutants. Multivariate regression analysis on the full set of 50 m medians found BC and NO as having the strongest relationship to railyard emissions, in comparison to their respective background levels. This was indicated by an increase associated with transiting through the yard and inverse relationship with distance from the railyard; NO and BC decreased by a factor of approximately 0.5 and 0.7 over 1 km distance of the railyard boundary, respectively. Low speed, variable wind conditions were related to higher concentrations of all measured parameters

    Episodic Impacts from California Wildfires Identified in Las Vegas Near-Road Air Quality Monitoring

    No full text
    Air pollutant concentrations near major highways are usually attributed to a combination of nearby traffic emissions and regional background, and generally presumed to be additive in nature. During a near-road measurement study conducted in Las Vegas, NV, the effects of distant wildfires on regional air quality were indicated over a several day period in the summer of 2009. Area-wide elevated particulate levoglucosan (maximum of 0.83 μg/m<sup>3</sup>) and roadside measurements of ultraviolet light-absorbing particulate matter (UVPM) in comparison to black carbon (Delta-C) were apparent over the three-day period. Back-trajectory modeling and satellite images supported the measurement results and indicated the transport of air pollutants from wildfires burning in southern California. Separating roadside measurements under apparent biomass burning event (Delta-C > 1000 ng m<sup>–3</sup>) and nonevent (Delta-C < 1000 ng m<sup>–3</sup>) periods, and constraining to specific days of week, wind speed range, wind direction from the road and traffic volume range, roadside carbon monoxide, black carbon, total particle number count (20–200 nm), and accumulation mode particle number count (100–200 nm) increased by 65%, 146%, 58%, and 366%, respectively, when biomass smoke was indicated. Meanwhile, ultrafine particles (20–100 nm) decreased by 35%. This episode indicates that the presence of aged wildfire smoke may interact with freshly emitted ultrafine particles, resulting in a decrease of particles in the ultrafine mode
    corecore